Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Review Article
  • Published:

Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes

Abstract

Mushrooms have been attracting attention as a source of bioactive compounds for the development of dietary supplements and medicines. Many researchers have reported pharmacological effects of edible mushrooms, and have isolated and identified bioactive substances. Lentinula edodes (shiitake) and Flammulina velutipes (enokitake) are the cultivated edible mushrooms that are popular throughout the world. In L. edodes, polyacetylenes and sulfur compounds have been shown to display antimicrobial activity. In F. velutipes, many types of bioactive terpenes have been reported from mycelium culture filtrate or solid culture substrate. This article reviews the bioactive metabolites of low-molecular weight from L. edodes and F. velutipes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Badalyan SM, Barkhudaryan A, Rapior S. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. In: Agrawal DC, Dhanasekaran M, editors. Medicinal mushrooms: recent progress in research and development. Singapore: Springer Nature Pte Ltd; 2019. p. 1–70.

  2. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez, editors. Edible and medicinal mushrooms: technology and applications. Singapore: John Wiley & Sons Ltd; 2017. p. 5–13.

  3. Raut JK. Current status, challenges and prospects of mushroom industry in Nepal. Int J Agric Econ. 2019;4:154–60.

    Google Scholar 

  4. Ma G, Yang W, Zhao L, Pei F, Fang D, Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Wellness. 2018;7:125–33.

    Google Scholar 

  5. Wasser SP. Shiitake (Lentinus edodes). In: Coates PM, Blackman MR, Cragg GM Levine M, Moss J, White JD, editors. Encyclopedia of dietary supplements. NY: Marcel Dekker; 2005. p. 653–64.

  6. Tokuyou Rinsanbutsu Seisan Toukei Chousa. e-Stat portal site of official statistics of Japan, website [Internet] (In Japanese). [cited 2020 May 20]. https://www.e-stat.go.jp/

  7. Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120:449–53.

    CAS  PubMed  Google Scholar 

  8. Bito T, Teng F, Ohishi N, Takenaka S, Miyamoto E, Sakuno E, et al. Characterization of vitamin B12 compounds in the fruiting bodies of shiitake mushroom (Lentinula edodes) and bed logs after fruiting of the mushroom. Mycoscience. 2014;55:462–8.

    CAS  Google Scholar 

  9. Jong SC, Birmingham JM. Medicinal and therapeutic value of the shiitake mushroom. In: Neidleman S, Laskin A, editors. Advances in applied microbiology, volume 39. USA: Academic Press, Inc; 1993. p. 153–84.

  10. Finimundy TC, Dillon AJP, Henriques JAP, Ely MR. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci. 2014;5:1095–105.

    Google Scholar 

  11. Komemushi S, Yamamoto Y, Fujita T. Antimicrobial substance produced by Lentinus edodes. J Antibact Antifung Agents. 1995;23:81–6. (in Japanese)

    Google Scholar 

  12. Komemushi S, Yamamoto Y, Fujita T. Purification and identification of antimicrobial substances produced by Lentinus edodes. J Antibact Antifung Agents. 1996;24:21–5. (in Japanese)

    CAS  Google Scholar 

  13. Bew RE, Chapman JR, Jones SRH, Lowe BE, Lowe G. Natural acetylenes. Part XVIII. Some allenic polyacetylenes from basidiomycetes. J Chem Soc C. 1966; 129–35.

  14. Ito S, (editors.) Mycological Flora of Japan. Vol. II. Japan: Tokyo Yokendo Ltd; 1959. (in Japanese)

  15. Ito S, Imai S. On the taxonomy of shii-take and matsu-take. Bot Mag Tokyo. 1925;39:319–29.

    Google Scholar 

  16. Shiio T, Suzuki K, Murai A, Maeyashiki I, Fukuda A, Okumura S. A method for producing antibiotic. Japan Kokai Tokkyo Koho, S48-35085, May 23rd, 1973. (in Japanese)

  17. Tokimoto K, Fujita T, Takeda Y, Takaishi Y. Increased or induced formation of antifungal substances in culture of Lentinus edodes by the attack of Trichoderma spp. Proc Jpn Acad. 1987;63:277–80.

    CAS  Google Scholar 

  18. Tokimoto K, Komatsu M. Selection and breeding of shiitake strains resistant to Trichoderma spp. Can J Bot. 1995;73(S1):962–6.

    Google Scholar 

  19. Higham CA, Jones ERH, Keeping JW, Thaller V. Natural acetylenes. Part XLV. Polyacetylenes from cultures of the fungus Collybia peronata (bolt. ex fr.) kummer. J Chem Soc, Perkin Trans. 1974;1:1991–4.

    Google Scholar 

  20. Herrmann H. Cortinellin, eine antibiotisch wirkasame Substanz aus Cortinellus shiitake. Naturwissenschaften. 1962;49:542.

    CAS  Google Scholar 

  21. Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog Lipid Res. 2007;46:328–75.

    CAS  PubMed  Google Scholar 

  22. Kavanagh F, Hervey A, Robbins WJ. Antibiotic substances from basidiomycetes V. Poria corticola, Poria tenuis and an unidentified Basidiomycete. Proc Natl Acad Sci USA. 1950;36:1–7.

    CAS  PubMed  Google Scholar 

  23. Bew RE, Cambie RC, Jones ERH, Lowe G. Natural acetylenes. Part XIX. Metabolites from some Poria species. J Chem Soc C. 1966:135–8

  24. Cambie RC, Hirschberg A, Jones ERH, Lowe G 783. Chemistry of the higher fungi. Part XVI. Polyacetylenic metabolites from Aleurodiscus roseus. J Chem Soc. 1963: 4120–30

  25. Morita K, Kobayashi S. Isolation, structure, and synthesis of lenthionine and its analogs. Chem Pharm Bull. 1967;15:988–93.

    CAS  PubMed  Google Scholar 

  26. Kumagai H. Health food for preventing or improving thrombosis and medicinal compositionfor preventing or treating thrombosis. WO2005034974A1, April 21st, 2005. (in Japanese)

  27. Kumagai H, Akao M, Masuda H. Hepatopathy inhibitor. Japan Kokai Tokkyo Koho, JP2013103900A, May 30th, 2013. (in Japanese)

  28. Chen CC, Ho CT. Identification of sulfurous compounds of shiitake mushroom (Lentinus edodes Sing.). J Agric Food Chem. 1988;34:830–3.

    Google Scholar 

  29. Chen J, Wei SL, Gao K. Chemical constituents and antibacterial activities of compounds from Lentinus edodes. Chem Nat Compd. 2015;51:592–4.

    CAS  Google Scholar 

  30. Isaka M, Chinthanom P, Rachtawee P, Choowong W, Choeyklin R, Thummarukcharoen T. Lanostane triterpenoids from cultivated fruiting bodies of the wood-rot basidiomycete Ganoderma casuarinicola. Phytochemistry. 2020;170:112225.

    PubMed  Google Scholar 

  31. Xu J, Hu Y, Qu W, Chen M, Zhou L, Bi Q, et al. Cytotoxic and neuroprotective activities of constituents from Alternaria alternate, a fungal endophyte of Psidium littorale. Bioorg Chem. 2019;90:103046.

    CAS  PubMed  Google Scholar 

  32. Ohnuma N, Amemiya K, Kakuda R, Yaoita Y, Machida K, Kikuchi M. Sterol constituents from two edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chem Pharm Bull. 2000;48:749–51.

    CAS  PubMed  Google Scholar 

  33. Ishizuka T, Yaoita Y, Kikuchi M. Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) S. F. Gray. Chem Pharm Bull. 1997;45:1756–60.

    CAS  Google Scholar 

  34. Yaoita Y, Amemiya K, Ohnuma H, Furumura K, Masaki A, Matsuki T, et al. Sterol constituents from five edible mushrooms. Chem Pharm Bull. 1998;46:944–50.

    CAS  Google Scholar 

  35. Yaoita Y, Endo M, Tani Y, Machida K, Amemiya K, Furumura K, et al. Sterol constituents from seven mushrooms. Chem Pharm Bull. 1999;47:847–51.

    CAS  Google Scholar 

  36. Gao LW, Li WY, Zhao YL, Wang JW. The cultivation, bioactive components and pharmacological effects of Armillaria mellea. Afr J Biotechnol. 2009;8:7383–90.

    CAS  Google Scholar 

  37. Lo Y, Lin S, Ulziijargal E, Chen S, Chien R, Tzou Y, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mush. 2012;14:357–63.

    CAS  Google Scholar 

  38. Lin S, Chen Y, Yu H, Barseghyan GS, Asatiani MD, Wasser SP, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mush. 2013;15:315–23.

    CAS  Google Scholar 

  39. Kała K, Kryczyk-Poprawa A, Rzewińska A, Muszyńska B. Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. Eur Food Res Technol. 2020;246:713–22.

    Google Scholar 

  40. Chen SY, Ho KJ, Hsieh YJ, Wang LT, Mau JL. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT-Food Sci Technol. 2012;47:274–8.

    CAS  Google Scholar 

  41. Chibata I, Okumura K, Takeyama S, Kotera K. Lentinacin: a new hypocholesterolemic substance in Lentinus edodes. Experientia. 1969;25:1237–8.

    CAS  PubMed  Google Scholar 

  42. Rokujo T, Kikuchi H, Tensho A, Tsukitani Y, Takenawa T, Yoshida K, et al. Lentysine: a new hypolipidemic agent from a mushroom. Life Sci. 1970;9:379–85.

    CAS  PubMed  Google Scholar 

  43. Saito M, Yasumoto T, Kaneda T. Quantitative analysese of eritadenine in “Shii-ta-ke” mushroom and other edible fungi. Eiyo Shokuryo. 1975;28:503–13. (in Japanese)

    CAS  Google Scholar 

  44. Huang Y, Komoto J, Takata Y, Powell DR, Gomi T, Ogawa H, et al. Inhibition of S-adenosylhomocysteine hydrolase by acyclic sugar adenosine analogue D-eritadenine. J Biol Chem. 2002;277:7477–82.

  45. Schanche JS, Schanche T, Ueland PM, Holy A, Votruba I. The effect of aliphatic adenine analogues on S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase in intact rat hepatocytes. Mol Pharm. 1984;26:553–8.

    CAS  Google Scholar 

  46. Afrin S, Rakib MA, Kim BH, Kim JO, Ha YL. Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. J Agric Food Chem. 2016;64:2263–8.

    CAS  PubMed  Google Scholar 

  47. Tang C, Hoo PC, Tan LT, Pusparajah P, Khan TM, Lee L, et al. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharm. 2016;7:Article 474.

    Google Scholar 

  48. Ishikawa NK, Yamaji K, Tahara S, Fukushi Y, Takahashi K. Highly oxidized cuparene-type sesquiterpenes from a mycelial culture of Flammulina velutipes. Phytochemistry. 2000;54:777–82.

    CAS  PubMed  Google Scholar 

  49. Ishikawa NK, Fukushi Y, Yamaji K, Tahara S, Takahashi K. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes. J Nat Prod. 2001;64:932–4.

    CAS  PubMed  Google Scholar 

  50. Tabuchi A, Fukushima-Sakuno E, Osaki-Oka K, Futamura Y, Motoyama T, Osada H, et al. Productivity and bioactivity of enokipodins A–D of Flammulina rossica and Flammulina velutipes. Biosci Biotechnol Biochem. 2020;84:876–86.

    CAS  PubMed  Google Scholar 

  51. Wang Y, Bao L, Yang X, Li L, Li S, Gao H, et al. Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem. 2012;132:1346–53.

    CAS  PubMed  Google Scholar 

  52. Wang Y, Bao L, Yang X, Dai H, Guo H, Yao X, et al. Four new cuparene-type sesquiterpenes from Flammulina velutipes. Helv Chim Acta. 2012;95:261–7.

    CAS  Google Scholar 

  53. Tao Q, Ma K, Yang Y, Wang K, Chen B, Huang Y, et al. Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem. 2016;81:9867–77.

    CAS  PubMed  Google Scholar 

  54. Schüffler A, Wollinsky B, Anke T, Liermann JC, Opatz T. Isolactarane and sterpurane sesquiterpenoids from the Basidiomycete Phlebia uda. J Nat Prod. 2012;75:1405–8.

    PubMed  Google Scholar 

  55. Wang Y, Bao L, Liu D, Yang X, Li S, Gao H, et al. Two new sesquiterpenes and six norsesquiterpenes from the solid culture of edible mushroom Flammulina velutipes. Tetrahedron. 2012;68:3012–8.

    CAS  Google Scholar 

  56. Ayer WA, Saeedi-Ghomi MH. 1-Sterpurene-3,12,14-triol and 1-sterpurene, metabolites of silver-leaf disease fungus Stereum purpureum. Can J Chem. 1981;59:2536–8.

    CAS  Google Scholar 

  57. Xu ZY, Wu ZA, Bi KS. A novel norsesquiterpene alkaloid from the mushroom-forming fungus Flammulina velutipes. Chin Chem Lett. 2013;24:57–8.

    Google Scholar 

  58. Kashinath K, Jadhav PD, Reddy S. Total synthesis of an anticancer norsesquiterpene alkaloid isolated from the fungus Flammulina velutipes. Org Biomol Chem. 2014;12:4098–103.

    CAS  PubMed  Google Scholar 

  59. Hirai Y, Ikeda M, Murayama T, Ohata T. New monoterpentriols from the fruiting body of Flammulina velutipes. Biosci Biotechnol Biochem. 1998;62:1364–8.

    CAS  PubMed  Google Scholar 

  60. Pavel Kalač. Chapter 2 Proximate composition and nutrients. In: Pavel Kalač, editors. Edible Mushrooms: chemical composition and nutritional value. USA: Academic Press; 2016. p. 5–13.

  61. Grimm D, Wösten HAB. Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol. 2018;102:7795–803.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emi Fukushima-Sakuno.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima-Sakuno, E. Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes. J Antibiot 73, 687–696 (2020). https://doi.org/10.1038/s41429-020-0354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0354-x

This article is cited by

Search

Quick links