Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 31, 2020

Hydrodesulfurization of dibenzothiophene using NiMoWS catalysts supported on Al–Mg and Ti–Mg mixed oxides

  • Pablo Jahir Peña-Obeso , Rafael Huirache-Acuña EMAIL logo , Manuel Arroyo-Albiter , Santiago José Guevara-Martínez , Carolina Leyva and Maritza E. Cervantes-Gaxiola EMAIL logo

Abstract

In this work, two series of trimetallic NiMoW sulfide catalysts supported on Al–Mg(x) and Ti–Mg(x) mixed oxides with different content of MgO (= 5, 10, 15 and 20 wt.% of MgO) were synthesized. The mixed oxides and catalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, N2 physisorption and Diffuse reflectance spectroscopy (DRS UV–Vis); and evaluated during the hydrodesulfurization (HDS) of dibenzothiophene (DBT) reaction. The NiMoW/Al–Mg catalysts showed a higher dispersion of Ni, Mo and W species than NiMoW/Ti–Mg catalysts resulting in higher catalytic activities. Catalysts with 10 wt.% of MgO showed the highest catalytic activity for both series of catalysts. Most of the synthesized catalysts exhibited higher activities than NiMoWS/Al–Ti reference catalyst. The present comparison study clearly showed that NiMoW/Al–Mg and NiMoW/Ti–Mg catalyst with 10 wt.% of MgO might be a promising and effective catalyst for the HDS-DBT reaction.


Corresponding authors: Rafael Huirache-Acuña, Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58030, Michoacán, Mexico, E-mail: ; and Maritza E. Cervantes-Gaxiola, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan, 80030, Sinaloa, Mexico, E-mail:

Funding source: Universidad Autónoma de Sinaloa

Award Identifier / Grant number: PROFAPI 2014/050

Funding source: CONACYT

Award Identifier / Grant number: 182191

Funding source: CIC UMSNH

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial supports from Universidad Autónoma de Sinaloa, Dirección General de Investigación y Posgrado (DGIP), Project PROFAPI 2014/050, Projects CONACYT 182191 and CIC UMSNH 2020.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Absi-Halabi, M., A. Stanislaus, and K. Al-Dolama. 1998. “Performance Comparison of Alumina-supported Ni–Mo, Ni–W and Ni–Mo–W Catalysis in Hydrotreating Vacuum Residue.” Fuel 77 (7): 787–90, https://doi.org/10.1016/s0016-2361(97)00228-7.Search in Google Scholar

American Petroleum Institute (API). 2020. Ultra Low Sulfur Diesel Fuel. Also available at https://www.api.org/news-policy-and-issues/fuels-and-renewable-policy/us-fuel-requirements/ultra-low-sulfur-diesel-fuel.Search in Google Scholar

Ansari, A., A. Ali, M. Asif, and S. Uzzaman. 2017. “Microwave-assisted MgO NP Catalyzed One-Pot Multicomponent Synthesis of Polysubstituted Steroidal Pyridines.” New Journal of Chemistry. 42, 184–197.10.1039/C7NJ03742BSearch in Google Scholar

Caloch, B., M. S. Rana, and J. Ancheyta. 2004. “Improved Hydrogenolysis (C–S, C–M) Function With Basic Supported Hydrodesulfurization Catalysts.” Catalysis Today 98 (1): 91–8, https://doi.org/10.1016/j.cattod.2004.07.023.Search in Google Scholar

Candia, R., B. S. Clausen, and H. Topsøe. 1982. “The Origin of Catalytic Synergy in Unsupported Co-Mo HDS Catalysts.” Journal of Catalysis 77 (2): 564–6, https://doi.org/10.1016/0021-9517(82)90199-3.Search in Google Scholar

Cervantes-Gaxiola, M. E., M. Arroyo-Albiter, R. Maya-Yescas, J. L. Rico-Cerda, A. Guevara-Lara, and J. Espino-Valencia. 2012. “Synthesis, Characterization and Catalytic Activity During Hydrodesulphurization of Dibenzothiophene of NiMoW Catalysts Supported on Al-Ti Mixed Oxides Modified With MgO.” Fuel 100: 57–65, https://doi.org/10.1016/j.fuel.2011.12.040.Search in Google Scholar

Cervantes-Gaxiola, M. E., M. Arroyo-Albiter, A. Pérez-Larios, P. B. Balbuena, and J. Espino-Valencia. 2013. “Experimental and Theoretical Study of NiMoW, NiMo, and NiW Sulfide Catalysts Supported on an AlTiMg Mixed Oxide During the Hydrodesulfurization of Dibenzothiophene.” Fuel 113: 733–43, https://doi.org/10.1016/j.fuel.2013.06.041.Search in Google Scholar

Chianelli, R. R., and G. Berhault. 1999. “Symmetrical Synergism and the Role of Carbon in Transition Metal Sulfide Catalytic Materials.” Catalysis Today 53 (3): 357–66, https://doi.org/10.1016/s0920-5861(99)00130-3.Search in Google Scholar

Chianelli, R. R., A. F. Ruppert, M. José-Yacamán, and A. Vázquez-Zavala. 1995. “HREM Studies of Layered Transition Metal Sulfide Catalytic Materials.” Catalysis Today 23 (3): 269–81, https://doi.org/10.1016/0920-5861(94)00167-z.Search in Google Scholar

Chianelli, R. R., G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner, and H. Toulhoat. 2002. “Periodic Trends in Hydrodesulfurization: In support of the Sabatier Principle.” Applied Catalysis A: General 227 (1): 83–96, https://doi.org/10.1016/s0926-860x(01)00924-3.Search in Google Scholar

Costa, P. D., C. Potvin, J.-M. Manoli, B. Genin, and G. Djéga-Mariadassou. 2004. “Deep Hydrodesulphurization and Hydrogenation of Diesel Fuels on Alumina-supported and Bulk Molybdenum Carbide Catalysts.” Fuel 83 (13): 1717–26, https://doi.org/10.1016/j.fuel.2004.03.007.Search in Google Scholar

Cruz-Perez, A. E., A. Guevara-Lara, J. P. Morales-Ceron, A. Alvarez-Hernandez, J. A. de Reyes, L. Massin, C. Geantet, and M. Vrinat. 2011. “Ni and W Interactions in the Oxide and Sulfide States on an Al2O3–TiO2 Support and Their Effects on Dibenzothiophene Hydrodesulfurization.” Catalysis Today 172 (1): 203–8, https://doi.org/10.1016/j.cattod.2011.03.027.Search in Google Scholar

Cruz-Pérez, A. E., Y. Torrez Jiménez, J. J. Velasco Alejo, T. A. Zepeda, D. M. Frías Márquez, M. G. Rivera Ruedas, S. Fuentes, and J. N. Díaz de León. 2016. “NiW/MgO–TiO2 Catalysts for Dibenzothiophene Hydrodesulfurization: Effect of Preparation Method.” Catalysis Today 271: 28–34, https://doi.org/10.1016/j.cattod.2015.07.048.Search in Google Scholar

de Beer, V. H. J., C. Bevelander, T. H. M. van Sint Fiet, P. G. A. J. Werter, and C. H Amberg. 1976. “The CoO-MoO3-γ-Al2O3 Catalyst: VI. Sulfur Content Analysis and Hydrodesulfurization Activities.” Journal of Catalysis 43 (1): 68–77, https://doi.org/10.1016/0021-9517(76)90294-3.Search in Google Scholar

Díaz de León, J. N., C. Ramesh Kumar, J. Antúnez-García, and S. Fuentes-Moyado. 2019. “Recent Insights in Transition Metal Sulfide Hydrodesulfurization Catalysts for the Production of Ultra Low Sulfur Diesel: A Short Review.” Catalysts 9 (1): 87, https://doi.org/10.3390/catal9010087.Search in Google Scholar

Dik, P. P., V. Y. Pereima, K. A. Nadeina, M. O. Kazakov, O. V. Klimov, E. Y. Gerasimov, I. P. Prosvirin, and A. S. Noskov. 2018. “Hydrocracking of Vacuum Gasoil on NiMoW/AAS-Al2O3 Trimetallic Catalysts: Effect of the W : Mo Ratio.” Catalysis in Industry 10 (1): 20–8, https://doi.org/10.1134/s2070050418010026.Search in Google Scholar

Duan, A., G. Wan, Z. Zhao, C. Xu, Y. Zheng, Y. Zhang, T. Dou, X. Bao, and K. Chung. 2007. “Characterization and Activity of Mo Supported Catalysts for Diesel Deep Hydrodesulphurization.” Catalysis Today 119 (1): 13–8, https://doi.org/10.1016/j.cattod.2006.08.049.Search in Google Scholar

Dufresne, P., N. Brahma, F. Labruyère, M. Lacroix, and M. Breysse. 1996. “Activation of Off Site Presulfided Cobalt-Molybdenum Catalysts.” Catalysis Today 29 (1): 251–4, https://doi.org/10.1016/0920-5861(95)00280-4.Search in Google Scholar

Echard, M., and J. Leglise. 2001. “Sulphidation of an Oxidic CoMo/Al2O3 Catalyst Under Practical Conditions: Different Kinds of Sulphur Species.” Catalysis Letters 72 (1): 83–9, https://doi.org/10.1023/a:1009037211108.10.1023/A:1009037211108Search in Google Scholar

El-Sayed, S. M., M. A. Amer, T. M. Meaz, N. M. Deghiedy, and H. A. El-Shershaby. 2018. “Investigational Analysis on Irradiated MgO–TiO2 Binary Oxide.” Materials Research Express 5 (5): 56508, https://doi.org/10.1088/2053-1591/aac09b.Search in Google Scholar

Girgis, M. J., and B. C. Gates. 1991. “Reactivities, Reaction Networks, and Kinetics in High-pressure Catalytic Hydroprocessing.” Industrial & Engineering Chemistry Research 30 (9): 2021–58, https://doi.org/10.1021/ie00057a001.Search in Google Scholar

Göbölös, S., Q. Wu, O. André, F. Delannay, and B. Delmon. 1986. “Correlation Between Hydrodesulphurization Activity and Reducibility of Unsupported MoS2-Based Catalysts Promoted by Group VIII Metals.” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 82 (8): 2423–34, https://doi.org/10.1039/f19868202423.Search in Google Scholar

Gómez-Orozco, S. Y., R. Huirache-Acuña, B. Pawelec, J. L. G. Fierro, E. M. Rivera-Muñoz, J. Lara-Romero, and G. Alonso-Nuñez. 2018. “Characterizations and HDS Performances of Sulfided NiMoW Catalysts Supported on Mesoporous Titania-modified SBA-15.” Catalysis Today 305: 152–61, https://doi.org/10.1016/j.cattod.2017.08.009.Search in Google Scholar

González-Cortés, S. L., S. Rugmini, T. Xiao, M. L. H. Green, S. M. Rodulfo-Baechler, and F. E. Imbert. 2014. “Deep Hydrotreating of Different Feedstocks Over a Highly Active Al2O3-Supported NiMoW Sulfide Catalyst.” Applied Catalysis A: General 475: 270–81, https://doi.org/10.1016/j.apcata.2014.01.045.Search in Google Scholar

Grzechowiak, J. R., J. Rynkowski, and I Wereszczako-Zieliñska. 2001. “Catalytic Hydrotreatment on Alumina–Titania supported NiMo Sulphides.” Catalysis Today 65 (2): 225–31, https://doi.org/10.1016/s0920-5861(00)00562-9.Search in Google Scholar

Guevara-Lara, A., A. E. Cruz-Pérez, Z. Contreras-Valdez, J. Mogica-Betancourt, A. Alvarez-Hernández, and M. Vrinat. 2010. “Effect of Ni Promoter in the Oxide Precursors of MoS2/MgO–Al2O3 Catalysts Tested in Dibenzothiophene Hydrodesulphurization.” Catalysis Today 149 (3): 288–94, https://doi.org/10.1016/j.cattod.2009.09.014.Search in Google Scholar

Guzmán, M. A., R. Huirache-Acuña, C. V. Loricera, J. R. Hernández, J. N. Díaz de León, J. A. de los Reyes, and B. Pawelec. 2013. “Removal of Refractory S-containing Compounds from Liquid Fuels Over P-loaded NiMoW/SBA-16 Sulfide Catalysts.” Fuel 103: 321–33, https://doi.org/10.1016/j.fuel.2012.07.005.Search in Google Scholar

Harris, S., and R. R. Chianelli. 1984. “Catalysis by Transition Metal Sulfides: The Relation Between Calculated Electronic Trends and HDS Activity.” Journal of Catalysis 86 (2): 400–12, https://doi.org/10.1016/0021-9517(84)90385-3.Search in Google Scholar

Houalla, M., D. H. Broderick, A. V. Sapre, N. K. Nag, V. H. J. de Beer, B. C. Gates, and H. Kwart. 1980. “Hydrodesulfurization of Methyl-substituted Dibenzothiophenes Catalyzed by Sulfided Co-Moγ-Al2O3.” Journal of Catalysis 61 (2): 523–7, https://doi.org/10.1016/0021-9517(80)90400-5.Search in Google Scholar

Huang, Z. D., W. Bensch, L. Kienle, S. Fuentes, G. Alonso, and C. Ornelas. 2008. “Preparation and Characterization of SBA-15 Supported Cobalt–Molybdenum Sulfide Catalysts for HDS Reaction: An All Sulfide Route to Hydrodesulfurization Catalysts.” Catalysis Letters 124 (1): 24, https://doi.org/10.1007/s10562-008-9516-3.Search in Google Scholar

Huirache-Acuña, R., M. A. Albiter, C. Ornelas, F. Paraguay-Delgado, R. Martínez-Sánchez, and G. Alonso-Nuñez. 2006. “Ni(Co)-Mo-W Sulphide Unsupported HDS Catalysts by Ex Situ Decomposition of Alkylthiomolybdotungstates.” Applied Catalysis A: General 308: 134–42, https://doi.org/10.1016/j.apcata.2006.04.015.Search in Google Scholar

Huirache-Acuña, R., B. Pawelec, C. V. Loricera, E. M. Rivera-Muñoz, R. Nava, B. Torres, and J. L. Fierro. 2012. “Comparison of the Morphology and HDS Activity of Ternary Ni(Co)-Mo-W Catalysts Supported on Al-HMS and Al-SBA-16 Substrates.” Applied Catalysis B: Environmental 125: 473–85, https://doi.org/10.1016/j.apcatb.2012.05.034.Search in Google Scholar

Jeziorowski, H., and H. Knoezinger. 1979. “Raman and Ultraviolet Spectroscopic Characterization of Molybdena on Alumina Catalysts.” The Journal of Physical Chemistry 83 (9): 1166–73, https://doi.org/10.1021/j100472a012.Search in Google Scholar

Kelty, S. P., G. Berhault, and R. R. Chianelli. 2007. “The Role of Carbon in Catalytically Stabilized Transition Metal Sulfides.” Applied Catalysis A: General 322: 9–15, https://doi.org/10.1016/j.apcata.2007.01.017.Search in Google Scholar

Klicpera, T., and M. Zdražil. 1999. “High Surface Area MoO3/MgO: Preparation by the New Slurry Impregnation Method and Activity in Sulphided State in Hydrodesulphurization of Benzothiophene.” Catalysis Letters 58 (1): 47–51, https://doi.org/10.1023/a:1019036724583.10.1023/A:1019036724583Search in Google Scholar

Klicpera, T., and M. Zdražil. 2002. “Preparation of High-Activity MgO-supported Co–Mo and Ni–Mo Sulfide Hydrodesulfurization Catalysts.” Journal of Catalysis 206 (2): 314–20, https://doi.org/10.1006/jcat.2001.3488.Search in Google Scholar

Klimova, T., D. Solís Casados, and J. Ramírez. 1998. “New Selective Mo and NiMo HDS Catalysts Supported on Al2O3–MgO(x) Mixed Oxides.” Catalysis Today 43 (1): 135–46, https://doi.org/10.1016/s0920-5861(98)00142-4.Search in Google Scholar

Knudsen, K. G., B. H. Cooper, and H. Topsøe. 1999. “Catalyst and Process Technologies for Ultra Low Sulfur Diesel.” Applied Catalysis A: General 189 (2): 205–15, https://doi.org/10.1016/s0926-860x(99)00277-x.Search in Google Scholar

Krüss, G. 1884. “Ueber die Schwefelverbindungen des Molybdäns.” Justus Liebigs Annalen der Chemie 225 (1): 1–57, https://doi.org/10.1002/jlac.18842250102.Search in Google Scholar

Lan, L., S. Ge, K. Liu, Y. Hou, and X. Bao. 2011. “Synthesis of Ni2P Promoted Trimetallic NiMoW/γ-Al2O3 Catalysts for Diesel Oil Hydrotreatment.” Journal of Natural Gas Chemistry 20 (2): 117–22, https://doi.org/10.1016/s1003-9953(10)60173-9.Search in Google Scholar

Lauritsen, J. V., M. V. Bollinger, E. Lægsgaard, K. W. Jacobsen, J. K. Nørskov, B. S. Clausen, H. Topsøe, and F. Besenbacher. 2004a. “Atomic-scale Insight into Structure and Morphology Changes of MoS2 Nanoclusters in Hydrotreating Catalysts.” Journal of Catalysis 221 (2): 510–22, https://doi.org/10.1016/j.jcat.2003.09.015.Search in Google Scholar

Lauritsen, J. V., M. Nyberg, J. K. Nørskov, B. S. Clausen, H. Topsøe, E. Lægsgaard, and F. Besenbacher. 2004b. “Hydrodesulfurization Reaction Pathways on MoS2 Nanoclusters Revealed by Scanning Tunneling Microscopy.” Journal of Catalysis 224 (1): 94–106, https://doi.org/10.1016/j.jcat.2004.02.009.Search in Google Scholar

Leyva, C., J. Ancheyta, A. Travert, F. Maugé, L. Mariey, J. Ramírez, and M. S. Rana. 2012. “Activity and Surface Properties of NiMo/SiO2–Al2O3 Catalysts for Hydroprocessing of Heavy Oils.” Applied Catalysis A: General 425-426: 1–12, https://doi.org/10.1016/j.apcata.2012.02.033.Search in Google Scholar

Li, X., F. Zhou, A. Wang, L. Wang, and Y. Hu. 2009. “Influence of Templates on the Overgrowth of MCM-41 over HY and the Hydrodesulfurization Performances of the Supported Ni−Mo Catalysts.” Industrial & Engineering Chemistry Research 48 (6): 2870–7, https://doi.org/10.1021/ie801389w.Search in Google Scholar

Massoth, F. E. 1975. “Studies of Molybdena-Alumina Catalysts: IV. Rates and Stoichiometry of Sulfidation.” Journal of Catalysis 36 (2): 164–84, https://doi.org/10.1016/0021-9517(75)90022-6.Search in Google Scholar

Mendoza-Nieto, J. A., O. Vera-Vallejo, L. Escobar-Alarcón, D. Solís-Casados, and T. Klimova. 2013. “Development of New Trimetallic NiMoW Catalysts Supported on SBA-15 for Deep Hydrodesulfurization.” Fuel 110: 268–77, https://doi.org/10.1016/j.fuel.2012.07.057.Search in Google Scholar

Mendoza-Nieto, J. A., A. Vizueth-Montes de Oca, L. A. Calzada, and T. E. Klimova. 2019. “Trimetallic NiMoW and CoMoW Catalysts Supported on SBA-15 Modified With Titania or Zirconia for Deep Hydrodesulfurization.” Catalysis Today, https://doi.org/10.1016/j.cattod.2019.06.023.Search in Google Scholar

Mogica-Betancourt, J. C., A. López-Benítez, J. R. Montiel-López, L. Massin, M. Aouine, M. Vrinat, G. Berhault, and A. Guevara-Lara. 2014. “Interaction Effects of Nickel Polyoxotungstate with the Al2O3–MgO Support for Application in Dibenzothiophene Hydrodesulfurization.” Journal of Catalysis 313: 9–23, https://doi.org/10.1016/j.jcat.2014.02.009.Search in Google Scholar

Mozhaev, A. V., M. S. Nikul’shina, C. Lancelot, P. Blanchard, C. Lamonier, and P. A. Nikul’shin. 2018. “Trimetallic Hydrotreating Catalysts CoMoW/Al2O3 and NiMoW/Al2O3 Prepared on the Basis of Mixed Mo-W Heteropolyacid: Difference in Synergistic Efects.” Petroleum Chemistry 58 (14): 1198–205, https://doi.org/10.1134/s0965544118140104.Search in Google Scholar

Nava, H., F. Pedraza, and G. Alonso. 2005. “Nickel-Molybdenum-Tungsten Sulfide Catalysts Prepared by In Situ Activation of Tri-metallic (Ni-Mo-W) Alkylthiomolybdotungstates.” Catalysis Letters 99 (1): 65–71, https://doi.org/10.1007/s10562-004-0777-1.Search in Google Scholar

Nikulshina, M. S., A. V. Mozhaev, P. P. Minaev, M. Fournier, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, and P. A. Nikulshin. 2017. “Trimetallic NiMoW/Al2O3 Hydrotreating Catalyst Based on H4SiMo3W9O40 Mixed Heteropoly Acid.” Russian Journal of Applied Chemistry 90 (7): 1122–9, https://doi.org/10.1134/s1070427217070151.Search in Google Scholar

Okamoto, Y., M. Breysse, G. Murali Dhar, and C. Song. 2003. “Effect of Support in Hydrotreating Catalysis for Ultra Clean Fuels.” Catalysis Today 86 (1): 1–3, https://doi.org/10.1016/s0920-5861(03)00414-0.Search in Google Scholar

Okamoto, Y. 2014. “Novel Molecular Approaches to the Structure-Activity Relationships and Unique Characterizations of Co–Mo Sulfide Hydrodesulfurization Catalysts for the Production of Ultraclean Fuels.” Bulletin of the Chemical Society of Japan 87 (1): 20–58, https://doi.org/10.1246/bcsj.20130204.Search in Google Scholar

Portela, L., P. Grange, and B. Delmon. 1995. “XPS and NO Adsorption Studies on Alumina-Supported Co-Mo Catalysts Sulfided by Different Procedures.” Journal of Catalysis 156 (2): 243–54, https://doi.org/10.1006/jcat.1995.1251.Search in Google Scholar

Priecel, P., D. Kubicka, L. Capek, Z. Bastl, and P. Rysanek. 2011. “The Role of Ni Species in the Deoxygenation of Rapeseed Oil over NiMo-Alumina Catalysts.” Applied Catalysis A: General 397 (1-2): 127–37, https://doi.org/10.1016/j.apcata.2011.02.022.Search in Google Scholar

Ramanathan, K., and S. W. Weller. 1985. “Characterization of Tungsten Sulfide Catalysts.” Journal of Catalysis 95 (1): 249–59, https://doi.org/10.1016/0021-9517(85)90025-9.Search in Google Scholar

Ramírez, J., and A. D. Gutiérrez-Alejandre. 1998. “Relationship Between Hydrodesulfurization Activity and Morphological and Structural Changes in NiW Hydrotreating Catalysts Supported on Al2O3–TiO2 Mixed Oxides.” Catalysis Today 43 (1): 123–33, https://doi.org/10.1016/s0920-5861(98)00141-2.Search in Google Scholar

Rana, M. S., M. L. Huidobro, J. Ancheyta, and M. T. Gómez. 2005. “Effect of Support Composition on Hydrogenolysis of Thiophene and Maya Crude.” Catalysis Today 107–108: 346–54, https://doi.org/10.1016/j.cattod.2005.07.029.Search in Google Scholar

Rana, M. S., A. Al-Barood, R. Brouresli, A. W. Al-Hendi, and N. Mustafa. 2018. “Effect of Organic Nitrogen Compounds on Deep Hydrodesulfurization of Middle Distillate.” Fuel Processing Technology 177: 170–8, https://doi.org/10.1016/j.fuproc.2018.04.014.Search in Google Scholar

Ríos-Caloch, G., V. Santes, J. Escobar, P. Pérez-Romo, L. Díaz, and L. Lartundo-Rojas. 2016. “Effect of Chitosan on the Performance of NiMoP-Supported Catalysts for the Hydrodesulfurization of Dibenzothiophene.” Journal of Nanomaterials 2016: 4047874, https://doi.org/10.1155/2016/4047874.Search in Google Scholar

Romero-Toledo, R., M. Bravo-Sánchez, G. Rangel-Porras, R. Fuentes-Ramírez, A. Pérez-Laríos, A. Medina-Ramirez, M. Martínez-Rosales. 2018. “Effect of Mg as Impurity on the Structure of Mesoporous γ-Al203: Efficiency as Catalytic Support in HDS of DBT.” International Journal of Chemical Reactor Engineering 16 (11): 1–16, https://doi.org/10.1515/ijcre-2017-0141.Search in Google Scholar

Sajjadi, S. M., M. Haghighi, and F. Rahmani. 2015. “Sol–gel Synthesis of Ni–Co/Al2O3–MgO–ZrO2 Nanocatalyst Used in Hydrogen Production via Reforming of CH4/CO2 Greenhouse Gases.” Journal of Natural Gas Science and Engineering 22: 9–21, https://doi.org/10.1016/j.jngse.2014.11.014.Search in Google Scholar

Scheffer, B., N. J. J. Dekker, P. J. Mangnus, and J. A. Moulijn. 1990. “A Temperature-programmed Reduction Study of Sulfided Co-Mo/Al2O3 Hydrodesulfurization Catalysts.” Journal of Catalysis 121 (1): 31–46, https://doi.org/10.1016/0021-9517(90)90214-5.Search in Google Scholar

Sigurdson, S., V. Sundaramurthy, A. K. Dalai, and J. Adjaye. 2008. “Phosphorus Promoted Trimetallic NiMoW/γ–Al2O3 Sulfide Catalysts in Gas Oil Hydrotreating.” Journal of Molecular Catalysis A: Chemical 291 (1): 30–7, https://doi.org/10.1016/j.molcata.2008.05.011.Search in Google Scholar

Soled, S. L., S. Miseo, R. Krycak, H. Vroman, T. C. Ho, and K. L. Riley. 2001. Nickel Molybodtungstate Hydrotreating Catalysts (law444). US Patent 6 (299). 760B761.Search in Google Scholar

Solis, D., T. Klimova, J. Ramírez, and T. Cortez. 2004. “NiMo/Al2O3–MgO (x) Catalysts: The Effect of the Prolonged Exposure to Ambient Air on the Textural and Catalytic Properties.” Catalysis Today 98 (1): 99–108, https://doi.org/10.1016/j.cattod.2004.07.024.Search in Google Scholar

Solís-Casados, D. A., L. Escobar-Alarcón, T. Klimova, J. Escobar-Aguilar, E. Rodríguez-Castellón, J. A. Cecilia, C. Morales-Ramírez. 2016. “Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization.” Catalysis Today 271, 35–44, https://doi.org/10.1016/j.cattod.2015.07.046.Search in Google Scholar

Solís-Casados, D. A., C. E. Rodríguez-Nava, T. Klimova, L. Escobar-Aguilar. 2019. “Selective HDS of DBT using a K2O-modified CoMoW/Al2O3-MgO catalytic formulation.” Catalysis Today 271, 35–44. In press, https://doi.org/10.1016/j.cattod.2019.07.029.Search in Google Scholar

Topsøe, H., and B. S. Clausen. 1984. “Importance of Co-Mo-S Type Structures in Hydrodesulfurization.” Catalysis Reviews 26 (3-4): 395–420. https://doi.org/10.1016/j.cattod.2019.07.029.Search in Google Scholar

Topsøe, H. 2007. “The Role of Co–Mo–S Type Structures in Hydrotreating Catalysts.” Applied Catalysis A: General 322: 3–8. https://doi.org/10.1016/j.apcata.2007.01.002.Search in Google Scholar

Trejo, F., M. S. Rana, and J. Ancheyta. 2008. “CoMo/MgO–Al2O3 Supported Catalysts: An Alternative Approach to Prepare HDS Catalysts.” Catalysis Today 130 (2): 327–36, https://doi.org/10.1016/j.cattod.2007.10.105.Search in Google Scholar

U.S. Enviromental Protection Agency. 2006. Diesel Fuel Standards. Also available at https://www.epa.gov/diesel-fuel-standards.Search in Google Scholar

Vakros, J., and C. Kordulis. 2001. “On the Synergy Between Tungsten and Molybdenum in the W-incorporated CoMo/γ-Al2O3 Hydrodesulfurization Catalysts.” Applied Catalysis A: General 217 (1): 287–93, https://doi.org/10.1016/s0926-860x(01)00616-0.Search in Google Scholar

van Haandel, L., M. Bremmer, P. J. Kooyman, J. A. R. van Veen, T. Weber, and E. J. M. Hensen. 2015. “Structure–Activity Correlations in Hydrodesulfurization Reactions over Ni-Promoted MoxW(1–x)S2/Al2O3 Catalysts.” ACS Catalysis 5 (12): 7276–87, https://doi.org/10.1021/acscatal.5b01806.Search in Google Scholar

Vangestel, J., J. Leglise, and J. C. Duchet. 1994. “Catalytic Properties of a Como/Al2O3 Catalyst Presulfided with Alkyl Polysulfides: Comparison with Conventional Sulfiding.” Journal of Catalysis 145 (2): 429–36, https://doi.org/10.1006/jcat.1994.1053.Search in Google Scholar

Vázquez-Garrido, I., A. López-Benítez, G. Berhault, and A. Guevara-Lara. 2019. “Effect of Support on the Acidity of NiMo/Al2O3-MgO and NiMo/TiO2–Al2O3 Catalysts and on the Resulting Competitive Hydrodesulfurization/Hydrodenitrogenation Reactions.” Fuel 236: 55–64, https://doi.org/10.1016/j.fuel.2018.08.053.Search in Google Scholar

Vázquez-Salas, P. J., R. Huirache-Acuña, T. A. Zepeda, G. Alonso-Núñez, R. Maya-Yescas, N. Mota, and B. Pawelec. 2018. “Enhancement of Dibenzothiophene Hydrodesulphurization via Hydrogenation Route on NiMoW Catalyst Supported on HMS Modified with Ti.” Catalysis Today 305: 65–74, https://doi.org/10.1016/j.cattod.2017.10.005.Search in Google Scholar

Vega-Granados, K., M. Del Valle, A. Licea-Claverie, G. Alonso-Núñez, R. Romero-Rivera, L. López-Sosa, M. Avalos-Borja, and J. Cruz-Reyes. 2017. “A New Route for the Synthesis of Ammonium Thiotungstate, a Catalyst Precursor.” Catalysis Letters 147 (6): 1339–46, https://doi.org/10.1007/s10562-017-2041-5.Search in Google Scholar

Vrinat, M., M. Breysse, C. Geantet, J. Ramirez, and F. Massoth. 1994. “Effect of MoS2 Morphology on the HDS Activity of Hydrotreating Catalysts.” Catalysis Letters 26 (1): 25–35, https://doi.org/10.1007/bf00824029.Search in Google Scholar

Wu, L., D. Jiao, J.-A. Wang, L. Chen, and F. Cao. 2009. “The Role of MgO in the Formation of Surface Active Phases of CoMo/Al2O3–MgO Catalysts for Hydrodesulfurization of Dibenzothiophene.” Catalysis Communications 11 (4): 302–5, https://doi.org/10.1016/j.catcom.2009.10.021.Search in Google Scholar

Xiong, G., Z. Feng, J. Li, Q. Yang, P. Ying, Q. Xin, and C. Li. 2000. “UV Resonance Raman Spectroscopic Studies on the Genesis of Highly Dispersed Surface Molybdate Species on γ-Alumina.” The Journal of Physical Chemistry B 104 (15): 3581–8, https://doi.org/10.1021/jp993609z.Search in Google Scholar

Yang, R., X. Li, J. Wu, X. Zhang, and Z. Zhang. 2009. “Promotion Effects of Copper and Lanthanum Oxides on Nickel/Gamma-Alumina Catalyst in the Hydrotreating of Crude 2-Ethylhexanol.” Journal of Physical Chemistry C 113 (41): 17787–94, https://doi.org/10.1021/jp9053296.Search in Google Scholar

Received: 2019-11-29
Accepted: 2020-06-23
Published Online: 2020-07-31

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2019-0216/html
Scroll to top button