Skip to main content
Log in

Optimal life-cycle consumption and investment decisions under age-dependent risk preferences

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

In this article we solve the problem of maximizing the expected utility of future consumption and terminal wealth to determine the optimal pension or life-cycle fund strategy for a cohort of pension fund investors. The setup is strongly related to a DC pension plan where additionally (individual) consumption is taken into account. The consumption rate is subject to a time-varying minimum level and terminal wealth is subject to a terminal floor. Moreover, the preference between consumption and terminal wealth as well as the intertemporal coefficient of risk aversion are time-varying and therefore depend on the age of the considered pension cohort. The optimal consumption and investment policies are calculated in the case of a Black–Scholes financial market framework and hyperbolic absolute risk aversion (HARA) utility functions. We generalize Ye (American control conference, 2008) by adding an age-dependent coefficient of risk aversion and extend Steffensen (J Econ Dyn Control 35(5):659–667, 2011), Hentschel (Planning for individual retirement: optimal consumption, investment and retirement timing under different preferences and habit persistence. Ph.D. thesis, Ulm University, 2016) and Aase (Stochastics 89(1):115–141, 2017) by considering consumption in combination with terminal wealth and allowing for consumption and terminal wealth floors via an application of HARA utility functions. A case study on fitting several models to realistic, time-dependent life-cycle consumption and relative investment profiles shows that only our extended model with time-varying preference parameters provides sufficient flexibility for an adequate fit. This is of particular interest to life-cycle products for (private) pension investments or pension insurance in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For completeness, we would like to emphasize that the continuity assumption is only required to find a nice representation of the solution for the optimal investment strategy later (cf. Theorem 1). A generalized version in the case of a discontinuous b(t) can be found at the end of the proof of Theorem 1.

  2. We would like to point out that for the sake of calibration and illustration we select this specific exemplary setting that of course does not picture all potential use cases. We fit our model to those exemplary average target curves such that we have control and orientation on the expectations (consumption and investment). Based upon this, the portfolio is managed optimally and dynamically over time. In general, the target curves can be chosen differently for each specific application. If one is interested in explaining some specific behavior patterns such as described by the non-participation or the moderate equity holdings puzzle, a different choice for the average target curves (if data is available) could be used, or different utility functions could be applied such as an S-shaped function that arises from Cumulative Prospect Theory (cf. [43, 70]).

  3. For two integrable functions f(x) and g(x) on the interval (ab), where f(x) is continuous and g(x) does not change sign on (ab), there exists \(d \in (a,b)\) such that

    $$\begin{aligned} \int _{a}^{b} f(x) g(x) dx = f(d) \int _{a}^{b} g(x) dx. \end{aligned}$$

References

  1. Aase, K.K.: The investment horizon problem: a possible resolution. Stochastics 89(1), 115–141 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Absolventa GmbH: Einstiegsgehalt von Berufseinsteigern 2018. https://www.absolventa.de/karriereguide/arbeitsentgelt/einstiegsgehalt (2018). Accessed 14 Sept 2018

  3. Akian, M., Menaldi, J.L., Sulem, A.: On an investment-consumption model with transaction costs. SIAM J. Control Optim. 34(1), 329–364 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Al-Ajmi, J.: Risk tolerance of individual investors in an emerging market. Int. Res. J. Financ. Econ. 17, 15–26 (2008)

    Google Scholar 

  5. Albert, S.M., Duffy, J.: Differences in risk aversion between young and older adults. Neurosci. Neuroecon. 2012(1), 3–9 (2012)

    Google Scholar 

  6. Altarovici, A., Reppen, M., Soner, H.M.: Optimal consumption and investment with fixed and proportional transaction costs. SIAM J. Control Optim. 55(3), 1673–1710 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Andréasson, J.G., Shevchenko, P.V., Novikov, A.: Optimal consumption, investment and housing with means-tested public pension in retirement. Insur. Math. Econ. 75, 32–47 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Arrow, K.J.: Essays in the Theory of Risk-Bearing. North-Holland, Amsterdam (1970)

    MATH  Google Scholar 

  9. Back, K., Liu, R., Teguia, A.: Increasing risk aversion and life-cycle investing. Math. Financ. Econ. 13(2), 287–302 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Bakshi, G.S., Chen, Z.: Baby boom, population aging, and capital markets. J. Bus. 67(2), 165–202 (1994)

    Google Scholar 

  11. Bellante, D., Green, C.A.: Relative risk aversion among the elderly. Rev. Financ. Econ. 13(3), 269–281 (2004)

    Google Scholar 

  12. Bellante, D., Saba, R.P.: Human capital and life-cycle effects on risk aversion. J. Financ. Res. 9(1), 41–51 (1986)

    Google Scholar 

  13. Bensoussan, A., Jang, B.G., Park, S.: Unemployment risks and optimal retirement in an incomplete market. Oper. Res. 64(4), 1015–1032 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Benzoni, L., Collin-Dufresne, P., Goldstein, R.S.: Portfolio choice over the life-cycle when the stock and labor markets are cointegrated. J. Financ. 62(5), 2123–2167 (2007)

    Google Scholar 

  15. Bodie, Z., Crane, D.B.: Personal investing: advice, theory, and evidence. Financ. Anal. J. 53(6), 13–23 (1997)

    Google Scholar 

  16. Bodie, Z., Merton, R.C., Samuelson, W.F.: Labor supply flexibility and portfolio choice in a life cycle model. J. Econ. Dyn. Control 16, 427–449 (1992)

    Google Scholar 

  17. Carroll, C.D.: Buffer-stock saving and the life cycle / permanent income hypothesis. Q. J. Econ. 112, 1–55 (1997)

    MATH  Google Scholar 

  18. Chang, H., Chang, K.: Optimal consumption-investment strategy under the Vasicek model: HARA utility and Legendre transform. Insur. Math. Econ. 72, 215–227 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Chang, H., Rong, X.: Legendre transform-dual solution for a class of investment and consumption problems with HARA utility. Math. Probl. Eng. 2014, 1–7 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Chen, A., Hentschel, F., Xu, X.: Optimal retirement time under habit persistence: what makes individuals retire early? Scand. Actuar. J. 3, 225–249 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Christiansen, M.C., Steffensen, M.: Deterministic mean-variance-optimal consumption and investment. Stochastics 85(4), 620–636 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Christiansen, M.C., Steffensen, M.: Around the life-cycle: deterministic consumption-investment strategies. N. Am. Actuar. J. 22(3), 491–507 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Cuoco, D.: Optimal consumption and equilibrium prices with portfolio constraints and stochastic income. J. Econ. Theory 72, 33–73 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Cuoco, D., Liu, H.: Optimal consumption of a divisible durable good. J. Econ. Dyn. Control 24, 561–613 (2000)

    MATH  Google Scholar 

  25. Dai, M., Jiang, L., Li, P., Yi, F.: Finite horizon optimal investment and consumption with transaction costs. SIAM J. Control Optim. 48(2), 1134–1154 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Damgaard, A., Fuglsbjerg, B., Munk, C.: Optimal consumption and investment strategies with a perishable and an indivisible durable consumption good. J. Econ. Dyn. Control 28, 209–253 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Deutsche Aktuarvereinigung (DAV) e.V.: Sterbetafeln: Der statistische Blick auf die Lebenserwartung. https://aktuar.de/fachartikelaktuaraktuell/AA38_Sterbetafeln.pdf#search=lebenserwartung (2017). Accessed 14 Sept 2018

  28. Duarte, I., Pinheiro, D., Pinto, A.A., Pliska, S.R.: Optimal life insurance purchase, consumption and investment on a financial market with multi-dimensional diffusive terms. Optimization 63(11), 1737–1760 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Elie, R., Touzi, N.: Optimal lifetime consumption and investment under a drawdown constraint. Financ. Stoch. 12, 299–330 (2008)

    MATH  Google Scholar 

  30. Erickson, H., Cunniff, J.: TIAA-CREF Asset Management: Lifecycle 2060 Fund. Technical report. Teachers Insurance and Annuity Association of America-College Retirement Equities Fund (TIAA-CREF), New York, p. 10017 (2015)

  31. Gebler, J., Matterson, W.: Life Cycle Investing for the Post-retirement Segment. Technical report. Milliman Research Report. Milliman, North Sydney (2010)

    Google Scholar 

  32. Gourinchas, P.O., Parker, J.A.: Consumption over the life cycle. Econometrica 70(1), 47–89 (2002)

    MATH  Google Scholar 

  33. Grandits, P.: An optimal consumption problem in finite time with a constraint on the ruin probability. Financ. Stoch. 19, 791–847 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Guasoni, P., Huang, Y.J.: Consumption, investment and healthcare with aging. Financ. Stoch. 23, 313–358 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Hentschel, F.: Planning for individual retirement: optimal consumption, investment and retirement timing under different preferences and habit persistence. Ph.D. thesis, Ulm University (2016)

  36. Ho, H.: An experimental study of risk aversion in decision-making under uncertainty. Int. Adv. Econ. Res. 15, 369–377 (2009)

    Google Scholar 

  37. Hobson, D., Tse, A.S.L., Zhu, Y.: A multi-asset investment and consumption problem with transaction costs. Financ. Stoch. 23, 641–676 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Huang, H., Milevsky, M.A.: Portfolio choice and mortality-contingent claims: the general HARA case. J. Bank. Financ. 32, 2444–2452 (2008)

    Google Scholar 

  39. Huang, H., Milevsky, M.A., Salisbury, T.S.: Optimal retirement consumption with a stochastic force of mortality. Insur. Math. Econ. 51, 282–291 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Jang, B.G., Koo, H.K., Park, S.: Optimal consumption and investment with insurer default risk. Insur. Math. Econ. 88, 44–56 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Jang, B.G., Park, S., Rhee, Y.: Optimal retirement with unemployment risks. J. Bank. Financ. 37, 3585–3604 (2013)

    Google Scholar 

  42. Jensen, N.R., Steffensen, M.: Personal finance and life insurance under separation of risk aversion and elasticity of substitution. Insur. Math. Econ. 62, 28–41 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Jin, H., Zhou, X.Y.: Behavioral portfolio selection in continuous time. Math. Financ. 18(3), 385–426 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    MATH  Google Scholar 

  45. Koo, H.K.: Consumption and portfolio selection with labor income: a continuous time approach. Math. Financ. 8(1), 49–65 (1998)

    MATH  Google Scholar 

  46. Kraft, H., Munk, C.: Optimal housing, consumption, and investment decisions over the life cycle. Manag. Sci. 57(6), 1025–1041 (2011)

    MATH  Google Scholar 

  47. Kraft, H., Munk, C., Wagner, S.: Housing habits and their implications for life-cycle consumption and investment. Rev. Financ. 22(5), 1737–1762 (2018)

    MATH  Google Scholar 

  48. Kronborg, M.T., Steffensen, M.: Optimal consumption, investment and life insurance with surrender option guarantee. Scand. Actuar. J. 2015(1), 59–87 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Lakner, P., Nygren, L.M.: Portfolio optimization with downside constraints. Math. Financ. 16(2), 283–299 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Malkiel, B.G.: A Random Walk Down Wall Street. W. W. Norton & Co., New York (1990)

    Google Scholar 

  51. Menoncin, F., Regis, L.: Longevity-linked assets and pre-retirement consumption/portfolio decisions. Insur. Math. Econ. 76, 75–86 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Google Scholar 

  53. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3(4), 373–413 (1971)

    MathSciNet  MATH  Google Scholar 

  54. Minderhoud, I., Molenaar, R., Ponds, E.: The impact of human capital on life-cycle portfolio choice: evidence for the Netherlands. In: Network for Studies on Pensions, Aging and Retirement (Netspar) (2011)

  55. Morin, R.A., Suarez, A.F.: Risk aversion revisited. J. Financ. 38(4), 1201–1216 (1983)

    Google Scholar 

  56. Munk, C.: Optimal consumption/investment policies with undiversifiable income risk and liquidity constraints. J. Econ. Dyn. Control 24, 1315–1343 (2000)

    MathSciNet  MATH  Google Scholar 

  57. Palsson, A.M.: Does the degree of relative risk aversion vary with household characteristics? J. Econ. Psychol. 17, 771–787 (1996)

    Google Scholar 

  58. Pliska, S.R., Ye, J.: Optimal life insurance purchase and consumption/investment under uncertain lifetime. J. Bank. Financ. 31, 1307–1319 (2007)

    Google Scholar 

  59. Polkovnichenko, V.: Life-cycle portfolio choice with additive habit formation preferences and uninsurable labor income risk. Rev. Financ. Stud. 20(1), 83–124 (2007)

    Google Scholar 

  60. Pratt, J.W.: Risk aversion in the small and in the large. Econometrica 32(1/2), 122–136 (1964)

    MATH  Google Scholar 

  61. Riley, W.B., Chow, K.V.: Asset allocation and individual risk aversion. Financ. Anal. J. 48(6), 32–37 (1992)

    Google Scholar 

  62. Shafir, E.: The Behavioral Foundations of Public Policy. Princeton University Press, Princeton (2013)

    Google Scholar 

  63. Shen, Y., Wei, J.: Optimal investment-consumption-insurance with random parameters. Scand. Actuar. J. 2016(1), 37–62 (2016)

    MathSciNet  MATH  Google Scholar 

  64. Shiller, R.J.: Life-cycle portfolios as government policy. Econ. Voice 2(1) (2005). Article 14

  65. Statistisches Bundesamt: Statistisches Jahrbuch. Kapitel 2: Bevölkerung. Familien, Lebensformen. Technical report. Statistisches Bundesamt (Destatis), Wiesbaden (2017)

  66. Statistisches Bundesamt: Laufende Wirtschaftsrechnungen: Einkommen, Einnahmen und Ausgaben privater Haushalte. Wirtschaftsrechnungen, Fachserie 15 Reihe 1. Technical report, Statistisches Bundesamt (Destatis), Wiesbaden (2018)

  67. Steffensen, M.: Optimal consumption and investment under time-varying relative risk aversion. J. Econ. Dyn. Control 35(5), 659–667 (2011)

    MathSciNet  MATH  Google Scholar 

  68. StepStone: Der StepStone Gehaltsreport 2017 für Absolventen. https://www.stepstone.de/Ueber-StepStone/knowledge/gehaltsreport-fur-absolventen-2017/ (2017). Accessed 14 Sept 2018

  69. Tang, S., Purcal, S., Zhang, J.: Life insurance and annuity demand under hyperbolic discounting. Risks 6(2), 43 (2018)

    Google Scholar 

  70. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)

    MATH  Google Scholar 

  71. Viceira, L.M.: Optimal portfolio choice for long-horizon investors with nontradable labor income. J. Financ. 56(2), 433–470 (2001)

    Google Scholar 

  72. Wang, C., Chang, H., Fang, Z.: Optimal consumption and portfolio decision with Heston’s SV model under HARA utility criterion. J. Syst. Sci. Inf. 5(1), 21–33 (2017)

    Google Scholar 

  73. Wang, C., Wang, N., Yang, J.: Optimal consumption and savings with stochastic income and recursive utility. J. Econ. Theory 165, 292–331 (2016)

    MathSciNet  MATH  Google Scholar 

  74. Wang, H., Hanna, S.: Does risk tolerance decrease with age? Financ. Counc. Plan. 8(2), 27–31 (1997)

    Google Scholar 

  75. Wirtschaftskammer Österreich: WKO Statistik: Lebenserwartung. https://www.wko.at/service/zahlen-daten-fakten/bevoelkerungsdaten.html (2016). Accessed 14 Sept 2018

  76. Yaari, M.E.: Uncertain lifetime, life insurance, and the theory of the consumer. Rev. Econ. Stud. 32(2), 137–150 (1965)

    Google Scholar 

  77. Yang, H., Fang, P., Wan, H., Zha, Y.: Inter-temporal optimal asset allocation and time-varying risk aversion. Appl. Math. Inf. Sci. 8(6), 2729–2737 (2014)

    MathSciNet  Google Scholar 

  78. Yao, R., Sharpe, D.L., Wang, F.: Decomposing the age effect on risk tolerance. J. Socio-Econ. 40(6), 879–887 (2011)

    Google Scholar 

  79. Ye, J.: Optimal life insurance, consumption and portfolio: a dynamic programming approach. In: American Control Conference, pp 356–362 (2008)

  80. Zieling, D., Mahayni, A., Balder, S.: Performance evaluation of optimized portfolio insurance strategies. J. Bank. Financ. 43, 212–225 (2014)

    Google Scholar 

  81. Zou, B., Cadenillas, A.: Explicit solutions of optimal consumption, investment and insurance problems with regime switching. Insur. Math. Econ. 58, 159–167 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Pavel V. Shevchenko acknowledges the support of Australian Research Council’s Discovery Projects funding scheme (Project Number DP160103489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Shevchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proofs

A Proofs

1.1 A.1 The consumption problem

Proof of Theorem 1

The Lagrangian of the Problem (11) subject to (12) is

$$\begin{aligned} \mathcal {L}(c,\lambda _{1}) = {}&\mathbb {E}\left[ \int _{0}^{T} U_{1}(t,c(t)) dt\right] - \lambda _{1} \left( \mathbb {E}\left[ \int _{0}^{T} \tilde{Z}(t) \left( c(t) - y(t)\right) dt\right] - v_{1}\right) \\ = {}&\mathbb {E}\left[ \int _{0}^{T} U_{1}(t,c(t)) - \lambda _{1} \left( \tilde{Z}(t) \left( c(t) - y(t)\right) - \frac{1}{T} v_{1}\right) dt\right] . \end{aligned}$$

By the structure of the utility function, the optimal \(c_{1}\) fulfills \(c_{1}(t;v_{1}) > \bar{c}(t)\) and thus the first order conditions involve existence of a Lagrange multiplier \(\lambda _{1} = \lambda _{1}(v_{1}) > 0\) such that the optimal \(c_{1}\) maximizes \(\mathcal {L}(c,\lambda _{1})\) and such that complementary slackness holds true. Hence it can be shown that the Karush–Kuhn–Tucker conditions besides the first derivative condition are satisfied. Following [1], let \(\nabla _{h} \mathcal {L}(c,\lambda _{1};h)\) denote the directional derivative of \(\mathcal {L}(c,\lambda _{1})\) in the feasible direction h. The directional derivative of a function f in the direction h is generally defined by

$$\begin{aligned} \nabla _{h} f(x) = \lim _{y \rightarrow 0} \frac{f(x + h y) - f(x)}{y}. \end{aligned}$$

If f is differentiable at x this results in

$$\begin{aligned} \nabla _{h} f(x) = f^{\prime }(x) h. \end{aligned}$$

In our case, for the inner function it holds

$$\begin{aligned}&\nabla _{h} \left( U_{1}(t,c(t)) - \lambda _{1} \left( \tilde{Z}(t) \left( c(t) - y(t)\right) - \frac{1}{T} v_{1}\right) \right) \\&\quad = \frac{\partial }{\partial c} \left( U_{1}(t,c(t)) - \lambda _{1} \left( \tilde{Z}(t) \left( c(t) - y(t)\right) - \frac{1}{T} v_{1}\right) \right) h(t)\\&\quad = \left( \frac{\partial }{\partial c} U_{1}(t,c(t)) - \lambda _{1} \tilde{Z}(t)\right) h(t). \end{aligned}$$

By the dominated convergence theorem, which allows interchanging expectation and differentiation, the first order condition gives

$$\begin{aligned} 0 = {}&\mathbb {E}\left[ \int _{0}^{T} \left( \frac{\partial }{\partial c} U_{1}(t,c(t)) - \lambda _{1} \tilde{Z}(t)\right) h(t) dt\right] \\ = {}&\mathbb {E}\left[ \int _{0}^{T} \left( e^{- \beta t} a(t) \left( \frac{1}{1-b(t)} \left( c(t) - \bar{c}(t)\right) \right) ^{b(t)-1} - \lambda _{1} \tilde{Z}(t)\right) h(t) dt\right] \end{aligned}$$

for all feasible h. In order to fulfill this condition for any h, the optimal consumption rate process must be

$$\begin{aligned} c_{1}(t;v_{1}) = (1-b(t)) \left( \lambda _{1} \frac{e^{\beta t}}{a(t)} \tilde{Z}(t)\right) ^{\frac{1}{b(t)-1}} + \bar{c}(t),\ t \in [0,T]. \end{aligned}$$
(A.1)

Since \(U_{1}(t,c)\) strictly increases in c, the budget constraint (12) for the optimal solution in (11) turns to equality, i.e.

$$\begin{aligned} \mathbb {E}\left[ \int _{0}^{T} \tilde{Z}(t) \left( c_{1}(t;v_{1}) - y(t)\right) dt\right] = v_{1}. \end{aligned}$$

When plugging in (A.1) and by Fubini, the budget condition after simple calculations turns into

$$\begin{aligned} v_{1} = {}&\mathbb {E}\left[ \int _{0}^{T} \tilde{Z}(t) \left( (1-b(t)) \left( \lambda _{1} \frac{e^{\beta t}}{a(t)} \tilde{Z}(t)\right) ^{\frac{1}{b(t)-1}} + \bar{c}(t) - y(t)\right) dt\right] \\ = {}&\int _{0}^{T} (1-b(t)) \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \lambda _{1}^{\frac{1}{b(t)-1}} dt + F_{1}(0). \end{aligned}$$

Here we used that \(\tilde{Z}(t)\) is a log-normal random variable and so is \(\tilde{Z}(t)^{\frac{b(t)}{b(t)-1}}\). For any \(v_{1} > F_{1}(0) = \int _{0}^{T} e^{- r t} \left( \bar{c}(t) - y(t)\right) dt\), the above equality determines \(\lambda _{1} > 0\) uniquely, since the integral in which \(\lambda _{1}\) appears strictly decreases in \(\lambda _{1}\) and has the limits 0 and \(\infty \) as \(\lambda _{1}\) approaches \(\infty \) and 0. It follows immediately that the condition \(v_{1} > \int _{0}^{T} e^{- r t} \left( \bar{c}(t) - y(t)\right) dt\) in (13) is inevitable. The optimal wealth process \(V_{1}(t ; v_{1})\) which arises by applying \(c_{1}(t ; v_{1})\) is

$$\begin{aligned} V_{1}(t ; v_{1}) = {}&\mathbb {E}\left[ \int _{t}^{T} \frac{\tilde{Z}(s)}{\tilde{Z}(t)} \left( c_{1}(s;v_{1}) - y(s)\right) ds \Big | \mathcal {F}_{t}\right] \\ = {}&\frac{1}{\tilde{Z}(t)} \bigg \{\int _{t}^{T} (1-b(s)) \left( \lambda _{1} \frac{e^{\beta s}}{a(s)}\right) ^{\frac{1}{b(s)-1}} \mathbb {E}\left[ \tilde{Z}(s)^{\frac{b(s)}{b(s)-1}} \Big | \mathcal {F}_{t}\right] ds \\&\quad \quad \quad + \int _{t}^{T} \left( \bar{c}(s) - y(s)\right) \mathbb {E}\left[ \tilde{Z}(s) \Big | \mathcal {F}_{t}\right] ds\bigg \}. \end{aligned}$$

\(\tilde{Z}(s)\) can be written as \(\frac{\tilde{Z}(s)}{\tilde{Z}(t)} \tilde{Z}(t)\) where \(\frac{\tilde{Z}(s)}{\tilde{Z}(t)}\) is independent of \(\mathcal {F}_{t}\) and \(\tilde{Z}(t)\) is \(\mathcal {F}_{t}\)-measurable. Therefore it follows

$$\begin{aligned} \mathbb {E}\left[ \tilde{Z}(s)^{\eta } \Big | \mathcal {F}_{t}\right] = \tilde{Z}(t)^{\eta } e^{- \eta \left( r + \frac{1}{2}\Vert \gamma \Vert ^{2}\right) (s-t) + \frac{1}{2} \eta ^{2} \Vert \gamma \Vert ^{2} (s-t)} = \tilde{Z}(t)^{\eta } e^{- \eta \left( r - \frac{1}{2} (\eta - 1) \Vert \gamma \Vert ^{2}\right) (s-t)} \end{aligned}$$

for any \(\eta \in \mathbb {R}\), where we used that \(\frac{\tilde{Z}(s)}{\tilde{Z}(t)}\) and thus \(\left( \frac{\tilde{Z}(s)}{\tilde{Z}(t)}\right) ^{\eta }\) are log-normally distributed. Define the function g by

$$\begin{aligned} g(s,t; v_{1}) = (1-b(s)) \left( \frac{e^{\beta s - b(s) \left( r - \frac{1}{2} \frac{1}{b(s)-1} \Vert \gamma \Vert ^{2}\right) (s-t)}}{a(s)}\right) ^{\frac{1}{b(s)-1}} \lambda _{1}^{\frac{1}{b(s)-1}}, \end{aligned}$$

then the optimal wealth process is given by

$$\begin{aligned} V_{1}(t ; v_{1}) = \int _{t}^{T} g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}} ds + F_{1}(t) \end{aligned}$$
(A.2)

with \(F_{1}(t)\) defined in (13). The dynamics can be calculated as

$$\begin{aligned} d V_{1}(t ; v_{1}) = {}&\left( - g(t,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(t)-1}} dt + \int _{t}^{T} d_{t} \left( g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}}\right) ds\right) \\&+ \left( - \left( \bar{c}(t) - y(t)\right) dt + \int _{t}^{T} d_{t} \left( e^{- r (s-t)} \left( \bar{c}(s) - y(s)\right) \right) ds\right) \\ = {}&\left( - g(t,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(t)-1}} - \left( \bar{c}(t) - y(t)\right) + \int _{t}^{T} r e^{- r (s-t)} \left( \bar{c}(s) - y(s)\right) ds\right) dt \\&+ \int _{t}^{T} d_{t} \left( g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}}\right) ds. \end{aligned}$$

Moreover, after differentiation we obtain

$$\begin{aligned} d_{t} g(s,t; v_{1}) = {}&(1-b(s)) \left( \frac{e^{\beta s - b(s) \left( r - \frac{1}{2} \frac{1}{b(s)-1} \Vert \gamma \Vert ^{2}\right) s}}{a(s)}\right) ^{\frac{1}{b(s)-1}} \lambda _{1}^{\frac{1}{b(s)-1}} d_{t} \left( e^{\frac{b(s)}{b(s)-1} \left( r - \frac{1}{2} \frac{1}{b(s)-1} \Vert \gamma \Vert ^{2}\right) t}\right) \\ = {}&\frac{b(s)}{b(s)-1} \left( r - \frac{1}{2} \frac{1}{b(s)-1} \Vert \gamma \Vert ^{2}\right) g(s,t; v_{1}) dt. \end{aligned}$$

By applying Itô’s formula to \(d \left( \tilde{Z}(t)^{\frac{1}{b(s)-1}}\right) \), we receive

$$\begin{aligned} d_{t} \left( g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}}\right) = {}&g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}} \left\{ \left( r - \frac{1}{b(s)-1} \Vert \gamma \Vert ^{2}\right) dt - \frac{1}{b(s)-1} \gamma ' dW(t)\right\} . \end{aligned}$$

Define

$$\begin{aligned} Y(t) = \int _{t}^{T} \frac{1}{b(s)-1} g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}} ds. \end{aligned}$$

In summary, the dynamics of the optimal wealth process can be calculated to be

$$\begin{aligned} d V_{1}(t ; v_{1}) = \mu _{V_{1}}(t) dt - Y(t) \gamma ' dW(t) \end{aligned}$$
(A.3)

with drift

$$\begin{aligned} \mu _{V_{1}}(t) = r V_{1}(t ; v_{1}) - g(t,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(t)-1}} - \bar{c}(t) + y(t) - \Vert \gamma \Vert ^{2} Y(t). \end{aligned}$$

By (A.1) it follows

$$\begin{aligned} c_{1}(t;v_{1}) = (1-b(t)) \left( \lambda _{1} \frac{e^{\beta t}}{a(t)} \tilde{Z}(t)\right) ^{\frac{1}{b(t)-1}} + \bar{c}(t) = g(t,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(t)-1}} + \bar{c}(t). \end{aligned}$$

Hence

$$\begin{aligned} \mu _{V_{1}}(t) = r V_{1}(t ; v_{1}) - c_{1}(t;v_{1}) + y(t) - \Vert \gamma \Vert ^{2} Y(t). \end{aligned}$$

In order to determine the optimal investment strategy \(\pi _{1}(t ; v_{1})\) to Problem (11) we compare the optimal wealth dynamics in (4) and (A.3):

$$\begin{aligned} d V_{1}(t ; v_{1}) = {}&V_{1}(t ; v_{1}) \left[ \left( r + \hat{\pi }_{1}(t ; v_{1})' \left( \mu - r \mathbf {1}\right) \right) dt + \hat{\pi }_{1}(t ; v_{1})'\sigma dW(t)\right] \\&\quad - c_{1}(t;v_{1}) dt + y(t) dt, \\ d V_{1}(t ; v_{1}) = {}&\left( r V_{1}(t ; v_{1}) - c_{1}(t;v_{1}) + y(t) - \Vert \gamma \Vert ^{2} Y(t)\right) dt - Y(t) \gamma ' dW(t). \end{aligned}$$

Matching the diffusion terms yields the equality

$$\begin{aligned} \hat{\pi }_{1}(t ; v_{1}) = - \frac{Y(t)}{V_{1}(t ; v_{1})} \varSigma ^{-1} (\mu - r \mathbf {1}) \end{aligned}$$

which simultaneously matches the drift terms. Therefore, if we insert the formula for Y(t), we obtain

$$\begin{aligned} \hat{\pi }_{1}(t ; v_{1}) = - \frac{\int _{t}^{T} \frac{1}{b(s)-1} g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}} ds}{V_{1}(t ; v_{1})} \varSigma ^{-1} (\mu - r \mathbf {1}) \end{aligned}$$
(A.4)

which holds true for a general function b(t) that does not have to be continuous. If b(t) is a continuous function, by the first mean value theorem for integralsFootnote 3 it furthermore follows that there exists \(\tilde{t}_{1} \in (t,T)\) such that

$$\begin{aligned} Y(t) = {}&\int _{t}^{T} \frac{1}{b(s)-1} g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}} ds = \frac{1}{b(\tilde{t}_{1})-1} \int _{t}^{T} g(s,t; v_{1}) \tilde{Z}(t)^{\frac{1}{b(s)-1}} ds \\ {\mathop {=}\limits ^{(\hbox {A.2})}} {}&\frac{1}{b(\tilde{t}_{1})-1} \left( V_{1}(t ; v_{1}) - F_{1}(t)\right) . \end{aligned}$$

This determines the optimal investment strategy to be

$$\begin{aligned} \hat{\pi }_{1}(t ; v_{1}) = \frac{1}{1 - b(\tilde{t}_{1})} \varSigma ^{-1} (\mu - r \mathbf {1}) \frac{V_{1}(t ; v_{1}) - F_{1}(t)}{V_{1}(t ; v_{1})}. \end{aligned}$$
(A.5)

\(\square \)

Proof of Theorem 2

Firstly, after simple calculations the value function of this problem is

$$\begin{aligned} \mathcal {V}_{1}(v_{1}) = {}&\mathbb {E}\left[ \int _{0}^{T} U_{1}(t,c_{1}(t;v_{1})) dt\right] \\ = {}&\int _{0}^{T} \frac{1-b(t)}{b(t)} \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \lambda _{1}^{\frac{b(t)}{b(t)-1}} dt, \end{aligned}$$

where \(\lambda _{1}\) is subject to (14). From differentiating both sides of Eq. (14) with respect to \(v_{1}\) we derive

$$\begin{aligned} 1 = \int _{0}^{T} (1-b(t)) \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \frac{\partial }{\partial v_{1}} \left( \lambda _{1}^{\frac{1}{b(t)-1}}\right) dt. \end{aligned}$$
(A.6)

This helps to identify \(\mathcal {V}_{1}^{\prime }(v_{1})\) to be

$$\begin{aligned} \mathcal {V}_{1}^{\prime }(v_{1}) = {}&\lambda _{1} \int _{0}^{T} (1-b(t)) \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \frac{\partial }{\partial v_{1}} \left( \lambda _{1}^{\frac{1}{b(t)-1}}\right) dt {\mathop {=}\limits ^{(\hbox {A.6})}} \lambda _{1}. \end{aligned}$$

Equation (A.6) further implies concavity of \(\mathcal {V}_{1}(v_{1})\) as after differentiation we receive

$$\begin{aligned} 1 = - \lambda _{1}^{\prime } \int _{0}^{T} \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \lambda _{1}^{- \frac{b(t)-2}{b(t)-1}} dt \end{aligned}$$

and thus

$$\begin{aligned} \mathcal {V}_{1}^{\prime \prime }(v_{1}) = \lambda _{1}^{\prime } = - \left( \int _{0}^{T} \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \lambda _{1}^{- \frac{b(t)-2}{b(t)-1}} dt\right) ^{-1} < 0. \end{aligned}$$

\(\square \)

1.2 A.2 The terminal wealth problem

Proof of Theorem 3

The Lagrangian of the Problem (16) subject to (17) is

$$\begin{aligned} \mathcal {L}(V,\lambda _{2}) = \mathbb {E}\left[ U_{2}(V)\right] - \lambda _{2} \left( \mathbb {E}\left[ \tilde{Z}(T) V\right] - v_{2}\right) = \mathbb {E}\left[ U_{2}(V) - \lambda _{2} \left( \tilde{Z}(T) V - v_{2}\right) \right] . \end{aligned}$$

First of all, it is clear that \({c_{2}(t ; v_{2}) \equiv 0}\). By the structure of the utility function, the optimal \(V_{2}\) fulfills \(V_{2}(T;v_{2}) > F\) and thus the first order conditions involve existence of a Lagrange multiplier \(\lambda _{2} = \lambda _{2}(v_{2}) > 0\) such that the optimal \(V_{2}\) maximizes \(\mathcal {L}(V,\lambda _{2})\) and such that complementary slackness holds true. Hence it can be shown that the Karush–Kuhn–Tucker conditions besides the first derivative condition are satisfied. By the dominated convergence theorem, the first order condition with respect to the directional derivative gives

$$\begin{aligned} 0 = \mathbb {E}\left[ \left( \frac{\partial }{\partial V} U_{2}(V) - \lambda _{2} \tilde{Z}(T)\right) h\right] = \mathbb {E}\left[ \left( e^{- \beta T} \hat{a} \left( \frac{1}{1-\hat{b}} (V-F)\right) ^{\hat{b}-1} - \lambda _{2} \tilde{Z}(T)\right) h\right] , \end{aligned}$$

which has to be satisfied for all suitable h; hence the optimal terminal wealth has to fulfill

$$\begin{aligned} V_{2}(T ; v_{2}) = (1-\hat{b}) \left( \lambda _{2} \frac{e^{\beta T}}{\hat{a}} \tilde{Z}(T)\right) ^{\frac{1}{\hat{b}-1}} + F. \end{aligned}$$
(A.7)

Since \(U_{2}(V)\) strictly increases in V, complementary slackness implies equality for the budget constraint

$$\begin{aligned} \mathbb {E}\left[ \tilde{Z}(T) V_{2}(T ; v_{2})\right] = v_{2}. \end{aligned}$$

Using (A.7) we obtain after straightforward calculations

$$\begin{aligned} v_{2} = {}&\mathbb {E}\left[ \tilde{Z}(T) \left( (1-\hat{b}) \left( \lambda _{2} \frac{e^{\beta T}}{\hat{a}} \tilde{Z}(T)\right) ^{\frac{1}{\hat{b}-1}} + F\right) \right] \\ = {}&(1-\hat{b}) \left( \frac{e^{\left[ \beta - \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T}}{\hat{a}}\right) ^{\frac{1}{\hat{b}-1}} \lambda _{2}^{\frac{1}{\hat{b}-1}} + F_{2}(0). \end{aligned}$$

Solving for \(\lambda _{2}\) yields

$$\begin{aligned} \lambda _{2} = e^{-\left[ \beta - \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \left( 1-\hat{b}\right) ^{1-\hat{b}} \hat{a} \left( v_{2} - F_{2}(0)\right) ^{\hat{b}-1} \end{aligned}$$
(A.8)

where \({v_{2} > F_{2}(0) = e^{- r T} F}\) in (18) is required. Plugging this back into (A.7), the optimal terminal wealth becomes

$$\begin{aligned} V_{2}(T ; v_{2}) = \left( v_{2} - F_{2}(0)\right) e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) T} \tilde{Z}(T)^{\frac{1}{\hat{b}-1}} + F. \end{aligned}$$
(A.9)

The optimal wealth process replicates \(V_{2}(T ; v_{2})\) and is uniquely given by

$$\begin{aligned} V_{2}(t ; v_{2}) = \mathbb {E}\left[ \frac{\tilde{Z}(T)}{\tilde{Z}(t)} V_{2}(T ; v_{2}) \Big | \mathcal {F}_{t}\right] = \left( v_{2} - F_{2}(0)\right) e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) t} \tilde{Z}(t)^{\frac{1}{\hat{b}-1}} + F_{2}(t) \end{aligned}$$
(A.10)

with \(F_{2}(t)\) defined in (18). Recall that

$$\begin{aligned} d \left( \tilde{Z}(t)^{\frac{1}{\hat{b}-1}}\right) = \tilde{Z}(t)^{\frac{1}{\hat{b}-1}} \left\{ \left[ - \frac{1}{\hat{b}-1} r + \frac{1}{2} \frac{1}{\hat{b}-1} \left( \frac{1}{\hat{b}-1} - 1\right) \Vert \gamma \Vert ^{2}\right] dt - \frac{1}{\hat{b}-1} \gamma ' dW(t)\right\} . \end{aligned}$$

It follows by Itô

$$\begin{aligned}&d \left( e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) t} \tilde{Z}(t)^{\frac{1}{\hat{b}-1}}\right) \\&\qquad = e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) t} d \left( \tilde{Z}(t)^{\frac{1}{\hat{b}-1}}\right) + \tilde{Z}(t)^{\frac{1}{\hat{b}-1}} d \left( e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) t}\right) + 0 \\&\qquad = e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) t} \tilde{Z}(t)^{\frac{1}{\hat{b}-1}} \left\{ \left( r - \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) dt - \frac{1}{\hat{b}-1} \gamma ' dW(t)\right\} . \end{aligned}$$

Then, after simple transformations and using (A.10), the optimal wealth dynamics can be calculated as

$$\begin{aligned} d V_{2}(t ; v_{2}) = {}&\left( v_{2} - F_{2}(0)\right) d \left( e^{\frac{\hat{b}}{\hat{b}-1} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) t} \tilde{Z}(t)^{\frac{1}{\hat{b}-1}}\right) + r F_{2}(t) dt \\ = {}&r V_{2}(t ; v_{2}) dt + \left( V_{2}(t ; v_{2}) - F_{2}(t)\right) \left\{ - \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2} dt - \frac{1}{\hat{b}-1} \gamma ' dW(t)\right\} . \end{aligned}$$

Comparing the diffusion term with the one from (4) for \(y(t) \equiv 0\) implies

$$\begin{aligned} \hat{\pi }_{2}(t ; v_{2}) = \frac{1}{1-\hat{b}} \varSigma ^{-1} (\mu - r \mathbf {1}) \frac{V_{2}(t ; v_{2}) - F_{2}(t)}{V_{2}(t ; v_{2})} \end{aligned}$$
(A.11)

which automatically matches the drifts iff \({c_{2}(t ; v_{2}) \equiv 0}\). \(\square \)

Proof of Theorem 4

Using the previous results, the value function of this problem can simply be calculated as

$$\begin{aligned} \mathcal {V}_{2}(v_{2}) = \mathbb {E}\left[ U_{2}(V_{2}(T ; v_{2}))\right] = e^{\left[ - \beta + \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \frac{\left( 1-\hat{b}\right) ^{1-\hat{b}}}{\hat{b}} \hat{a} \left( v_{2} - F_{2}(0)\right) ^{\hat{b}}. \end{aligned}$$

This implies

$$\begin{aligned} \mathcal {V}_{2}^{\prime }(v_{2}) = e^{\left[ - \beta + \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \frac{\left( 1-\hat{b}\right) ^{1-\hat{b}}}{\hat{b}} \hat{a} \hat{b} \left( v_{2} - F_{2}(0)\right) ^{\hat{b}-1} {\mathop {=}\limits ^{(\hbox {A.8})}} \lambda _{2} > 0. \end{aligned}$$

Due to the assumption \({v_{2} - F_{2}(0) > 0}\) in (18), it is straightforward that \({\mathcal {V}_{2}^{\prime \prime }(v_{2}) = \lambda _{2}^{\prime } < 0}\):

$$\begin{aligned} \mathcal {V}_{2}^{\prime \prime }(v_{2}) = - e^{\left[ - \beta + \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \left( 1-\hat{b}\right) ^{2-\hat{b}} \hat{a} \left( v_{2} - F_{2}(0)\right) ^{\hat{b}-2} < 0. \end{aligned}$$

\(\square \)

1.3 A.3 Optimal merging of the individual solutions

Proof of Theorem 5

The proof can be performed by simply following the line of [44, 49]. \(\square \)

Proof of Lemma 1

In accordance with Theorem 5 and by expressing \(v_{2} = v_{0} - v_{1}\), the candidate for the optimal \({v_{1}^{\star }}\) is the one that satisfies the first order derivative condition on the budget

$$\begin{aligned} 0 = \frac{\partial }{\partial v_{1}} \left( \mathcal {V}_{1}(v_{1}) + \mathcal {V}_{2}(v_{0} - v_{1})\right) = \mathcal {V}_{1}^{\prime }(v_{1}) - \mathcal {V}_{2}^{\prime }(v_{0} - v_{1}) \end{aligned}$$

such that \({v_{1}^{\star } \ge F_{1}(0)}\), \({v_{2}^{\star } = v_{0} - v_{1}^{\star }}\) with \({v_{2}^{\star } \ge F_{2}(0)}\); thus \({F_{1}(0) \le v_{1}^{\star } \le v_{0} - F_{2}(0)}\). Theorems 2 and 4 tell that \(\mathcal {V}_{1}(v_{1})\) and \(\mathcal {V}_{2}(v_{2})\) are strictly concave functions in \(v_{1}\) respectively \(v_{2}\). Therefore, it follows

$$\begin{aligned} 0 = \frac{\partial ^{2}}{\partial v_{1}^{2}} \left( \mathcal {V}_{1}(v_{1}) + \mathcal {V}_{2}(v_{0} - v_{1})\right) = \mathcal {V}_{1}^{\prime \prime }(v_{1}) + \mathcal {V}_{2}^{\prime \prime }(v_{0} - v_{1}) < 0. \end{aligned}$$

This implies that the candidates \(v_{1}^{\star }\) and \({v_{2}^{\star } = v_{0} - v_{1}^{\star }}\) are the solution when the constraint \(F_{1}(0) \le v_{1}^{\star } \le v_{0} - F_{2}(0)\) applies. \(\square \)

Proof of Lemma 2

In accordance with Theorems 2 and 4 we have

$$\begin{aligned} \mathcal {V}_{1}^{\prime }(v_{1}) = {}&\lambda _{1}, \\ \mathcal {V}_{2}^{\prime }(v_{2}) = {}&\lambda _{2} = e^{-\left[ \beta - \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \left( 1-\hat{b}\right) ^{1-\hat{b}} \hat{a} \left( v_{2} - F_{2}(0)\right) ^{\hat{b}-1}. \end{aligned}$$

By equating \(\mathcal {V}_{1}^{\prime }(v_{1})\) and \(\mathcal {V}_{2}^{\prime }(v_{0} - v_{1})\) we obtain

$$\begin{aligned} {}(19) \text { in Lemma } 1 \Leftrightarrow&\mathcal {V}_{1}^{\prime }(v_{1}) = \mathcal {V}_{2}^{\prime }(v_{0} - v_{1}) \\ \Leftrightarrow&\lambda _{1} = \lambda _{2} = e^{-\left[ \beta - \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \left( 1-\hat{b}\right) ^{1-\hat{b}} \hat{a} \left( v_{0} - v_{1} - F_{2}(0)\right) ^{\hat{b}-1}. \end{aligned}$$

Inserting \(\lambda _{1}\) in Eq. (14), the optimal \(v_{1}^{\star }\) is the solution to

$$\begin{aligned} v_{1} - \int _{0}^{T} \chi (t) \left( v_{0} - v_{1} - F_{2}(0)\right) ^{\frac{\hat{b}-1}{b(t)-1}} dt = F_{1}(0), \end{aligned}$$

where the continuous function \(\chi (t)\) is defined by

$$\begin{aligned} \chi (t) = (1-b(t)) \left( 1-\hat{b}\right) ^{\frac{1-\hat{b}}{b(t)-1}} \left( \frac{\hat{a}}{a(t)}\right) ^{\frac{1}{b(t)-1}} \left( \frac{e^{\left[ \beta - b(t) \left( r - \frac{1}{2} \frac{1}{b(t)-1} \Vert \gamma \Vert ^{2}\right) \right] t}}{e^{\left[ \beta - \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T}}\right) ^{\frac{1}{b(t)-1}} > 0. \end{aligned}$$

It remains to verify \({F_{1}(0) \le v_{1}^{\star } \le v_{0} - F_{2}(0)}\) and uniqueness of \(v_{1}^{\star }\). For this sake, define the function f by

$$\begin{aligned} f: (-\infty ,v_{0} - F_{2}(0)],\ f(x) = x - \int _{0}^{T} \chi (t) \left( v_{0} - x - F_{2}(0)\right) ^{\frac{\hat{b}-1}{b(t)-1}} dt - F_{1}(0). \end{aligned}$$

\(v_{1}^{\star }\) is the root of the function f, i.e. \({f(v_{1}^{\star }) = 0}\), if it holds \({v_{1}^{\star } \ge F_{1}(0)}\). f is continuous in x, the exponent \({\frac{\hat{b}-1}{b(t)-1}}\) within the first integral is positive. Furthermore, due to \({v_{0} > F(0)}\) claimed in (9) and \({F(t) = F_{1}(t) + F_{2}(t)}\), we have for the limits

$$\begin{aligned} \lim _{x \searrow F_{1}(0)} f(x) = {}&- \int _{0}^{T} \chi (t) \left( v_{0} - F(0)\right) ^{\frac{\hat{b}-1}{b(t)-1}} dt < 0, \\ \lim _{x \nearrow v_{0} - F_{2}(0)} f(x) = {}&v_{0} - F(0) > 0. \end{aligned}$$

Note, \({F_{1}(0) \le v_{1} = v_{0} - v_{2} \le v_{0} - F_{2}(0)}\) for general \(v_{1}\) and \(v_{2}\). Additionally, f is strictly monotone increasing in x since

$$\begin{aligned} f^{\prime }(x) = 1 + \int _{0}^{T} \chi (t) \frac{\hat{b}-1}{b(t)-1} \left( v_{0} - x - F_{2}(0)\right) ^{\frac{\hat{b}-b(t)}{b(t)-1}} dt > 0,\ \forall x \le v_{0} - F_{2}(0). \end{aligned}$$

We conclude that there exists a unique root \({x \in [F_{1}(0), v_{0} - F_{2}(0)]}\) such that \({f(x) = 0}\). Therefore, we conclude that the optimal \(v_{1}^{*}\) and \(v_{2}^{\star } = v_{0} - v_{1}^{*}\) exist and are unique. \(v_{1}^{*}\) is the solution to Eq. (20). The optimal Lagrange multiplier \(\lambda _{1}^{\star } = \lambda _{1}(v_{1}^{\star })\) is then given by

$$\begin{aligned} \lambda _{1}^{\star } = \left( 1-\hat{b}\right) ^{1-\hat{b}} \hat{a} e^{-\left[ \beta - \hat{b} \left( r - \frac{1}{2} \frac{1}{\hat{b}-1} \Vert \gamma \Vert ^{2}\right) \right] T} \left( v_{0} - v_{1}^{\star } - F_{2}(0)\right) ^{\hat{b}-1}. \end{aligned}$$

\(\square \)

Proof of Theorem 6

Starting with \({V^{\star }(t; v_{0}) = V_{1}(t;v_{1}^{\star }) + V_{2}(t;v_{2}^{\star })}\) we compare the dynamics of both sides of the equation:

$$\begin{aligned} d V^{\star }(t; v_{0}) = d V_{1}(t;v_{1}^{\star }) + d V_{2}(t;v_{2}^{\star }). \end{aligned}$$
(A.12)

Comparing the diffusion terms in (A.12), by inserting the wealth sde (4) for \(V^{\star }(t; v_{0})\), \(V_{1}(t;v_{1}^{\star })\) and \(V_{2}(t;v_{2}^{\star })\) (with \(y(t) \equiv 0\) for \(V_{2}(t;v_{2}^{\star })\)), gives

$$\begin{aligned} \hat{\pi }^{\star }(t; v_{0}) = \frac{\hat{\pi }_{1}(t;v_{1}^{\star }) V_{1}(t;v_{1}^{\star }) + \hat{\pi }_{2}(t;v_{2}^{\star }) V_{2}(t;v_{2}^{\star })}{V^{\star }(t; v_{0})}. \end{aligned}$$

Inserting this back and comparing the drift terms finally leads to

$$\begin{aligned} c^{\star }(t; v_{0}) = c_{1}(t;v_{1}^{\star }). \end{aligned}$$

Notice that the pair \({(\hat{\pi }^{\star },c^{\star })}\) is admissible, i.e. \({(\hat{\pi }^{\star },c^{\star }) \in \varLambda }\) because \({(\hat{\pi }_{1},c_{1}) \in \varLambda _{1}}\) and \({(\hat{\pi }_{2},0) \in \varLambda _{2}}\) which implies

$$\begin{aligned} V^{\star }(t; v_{0}) = \underbrace{V_{1}(t;v_{1}^{\star })}_{\ge - \int _{t}^{T} e^{- r (s-t)} y(s) ds} + \underbrace{V_{2}(t;v_{2}^{\star })}_{\ge 0} \ge - \int _{t}^{T} e^{- r (s-t)} y(s) ds,\ \mathbb {P}-a.s.,\ \forall t \in [0,T]. \end{aligned}$$

Using Lemma 2 and the solutions in Theorems 1 and 3 we arrive at the stated results in Theorem 6 after straightforward calculations for the utility setup in (8). \(\square \)

Proof of Remark 4

The formula for the optimal investment strategy is straightforward from Theorem 6 as \({b(\tilde{t}_{1}^{\star }) \equiv \hat{b}}\) and \({V^{\star }(t ; v_{0}) = V_{1}(t ; v_{1}^{\star }) + V_{2}(t ; v_{2}^{\star })}\) for any \(t \in [0,T]\). The optimal \(v_{1}^{\star }\) and the corresponding \(g(s,t; v_{1}^{\star })\) can be determined by Lemma 2, \(V_{1}(t ; v_{1}^{\star })\), \(V_{2}(t ; v_{2}^{\star })\) and thus \(V^{\star }(t ; v_{0})\) then follow from Theorem 6 with simple calculations. Using again Theorem 6 finally leads to the stated optimal consumption rate \(c^{\star }(t;v_{0})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichtenstern, A., Shevchenko, P.V. & Zagst, R. Optimal life-cycle consumption and investment decisions under age-dependent risk preferences. Math Finan Econ 15, 275–313 (2021). https://doi.org/10.1007/s11579-020-00276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-020-00276-9

Keywords

JEL Classification

Navigation