Skip to main content
Log in

Effect of dew point on hot-dip galvanizing behavior of a high-manganese TWIP steel for automotive application

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of dew points (− 50, − 10 and + 10 °C) on the galvanizing properties of a high-manganese twinning-induced plasticity (TWIP) steel was studied. Scanning electron microscopy (SEM), glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for microscopic observation and qualitative analysis of the interfacial layer between the steel surface and the zinc layer after hot-dip galvanizing. SEM analysis results show that three different morphologies of metallic oxides are formed on the interfacial layer under the different dew points. GDOES results show that Al is present in the molten zinc, reacting with Fe on the steel surface to form Fe2Al5, which can increase the galvanizing properties. XPS results show that the valence states of Mn in the interfacial alloy layer are Mn2+ and Mn4+, and the valence states of Fe are Fe0, Fe2+ and Fe3+. The experimental results show that the hot-dip galvanizing performance is the best at − 10 °C and the formation of Mn and Fe intermetallic oxides has a bad effect on hot-dip galvanizing behavior of the high-manganese TWIP steel. The types of the formed surface oxides (MnO, Mn3O4, Mn2O3, FeO, and Fe2MnO4) on the surface of the steel sheet are confirmed. It can obtain the best hot-dip galvanizing performance of the high-manganese TWIP steel by controlling the dew point from − 10 to − 5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Senuma, ISIJ Int. 41 (2001) 520–532.

    Article  Google Scholar 

  2. S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater. 52 (2004) 2005–2012.

    Article  Google Scholar 

  3. R. Khondker, A. Mertens, J.R. McDermid, Mater. Sci. Eng. A 463 (2007) 157–165.

    Article  Google Scholar 

  4. E.M. Bellhouse, J.R. McDermid, Mater. Sci. Eng. A 491 (2008) 39–46.

    Article  Google Scholar 

  5. E.M. Bellhouse, A.I.M. Mertens, J.R. McDermid, Mater. Sci. Eng. A 463 (2007) 147–156.

    Article  Google Scholar 

  6. T. Kawano, F.U. Renner, Surf. Interface Anal. 44 (2012) 1009–1012.

    Article  Google Scholar 

  7. Y.K. Kim, J. Lee, K.S. Shin, S.H. Jeon, K.G. Chin, Mater. Charact. 89 (2014) 138–145.

    Article  Google Scholar 

  8. R. Sagl, A. Jarosik, D. Stifter, G. Angeli, Corros. Sci. 70 (2013) 268–275.

    Article  Google Scholar 

  9. M. Blumenau, M. Norden, F. Friedel, K. Peters. Surf. Coat. Technol. 206 (2011) 559–567.

    Article  Google Scholar 

  10. V. Di Castro, S. Ciampi, Surf. Sci. 331–333 (1995) 294–299.

    Article  Google Scholar 

  11. A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet, J.R. McDermid, Appl. Surf. Sci. 379 (2016) 242–248.

    Article  Google Scholar 

  12. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Laua, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.

  13. C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979.

    Google Scholar 

  14. D. Banerjee, H.W. Nesbitt, Geochim. Cosmochim. Acta 63 (1999) 3025–3038.

    Article  Google Scholar 

  15. N.S. McIntyre, D.G. Zetaruk, Anal. Chem. 49 (1977) 1521–1529.

    Article  Google Scholar 

  16. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. Mcintyre, Surf. Interface Anal. 36 (2004) 1564–1574.

    Article  Google Scholar 

  17. D. Banerjee, H.W. Nesbitt, Geochim. Cosmochim. Acta 65 (2001) 1703–1714.

    Article  Google Scholar 

  18. D. Huin, P. Flauder, J.B. Leblond, Oxid. Met. 64 (2005) 131–167.

    Article  Google Scholar 

  19. A. Rist, M.F. Ancey-moret, C. Gatellier, P.V. Ribound, Techniques de L’ingénieur Matériaux Métalliques M1730 (1974) 1–42.

    Google Scholar 

  20. S.H. Kim, J.Y. Huh, M.S. Kim, J.S. Kim, Corros. Sci. Technol. 16 (2017) 15–22.

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program of China (2017YFB0304402) and the National Natural Science Foundation of China (51971127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-dong Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Td., Shi, W., Liu, Rd. et al. Effect of dew point on hot-dip galvanizing behavior of a high-manganese TWIP steel for automotive application. J. Iron Steel Res. Int. 27, 1200–1211 (2020). https://doi.org/10.1007/s42243-020-00455-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00455-4

Keywords

Navigation