Skip to main content
Log in

Dynamical analysis of a fractional order eco-epidemiological model with nonlinear incidence rate and prey refuge

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a fractional order eco-epidemiological model with nonlinear incidence rate is studied. The populations are divided into healthy prey, infected prey and predator. A prey refuge was introduced in the healthy prey population to make the model more realistic. Various qualitative properties including local and global stability analysis of equilibrium points are investigated. The theoretical results are verified by numerical simulations. The fractional order model is shown to have rich dynamical behavior including bistability phenomena, supercritical Hopf bifurcation, subcritical Hopf bifurcation and transcritical bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. Bacaër, N.: A short history of mathematical population dynamics. Springer Science & Business Media, Berlin (2011)

    MATH  Google Scholar 

  2. Chen, Y., Jiang, Y.: An eco-epidemiological model with infectious disease in food chain. Int. J. Bifurc. Chaos 21, 1935–1952 (2011)

    MATH  Google Scholar 

  3. Biswas, S., Sasmal, S.K., Samanta, S., Saifuddin, M., Pal, N., Chattopadhyay, J.: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dyn. 87, 1553–1573 (2017)

    MATH  Google Scholar 

  4. Saifuddin, M., Sasmal, S.K., Biswas, S., Sarkar, S., Alquran, M., Chattopadhyay, J.: Effect of emergent carrying capacity in an eco-epidemiological system. Math. Methods Appl. Sci. 39, 806–823 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Sharma, S., Samanta, G.P.: A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. Chaos Solitons Fractals 70, 69–84 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Mortoja, G., Panja, P., Mondal, K.: Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population. Ecol. Genet. Genom. 10, 100035 (2018)

    Google Scholar 

  7. Meng, X., Qin, N., Huo, H.: Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. Journal of Biological Dynamics 12, 342–374 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population. Adv. Diff. Equ. 2020, 48 (2020)

    MathSciNet  Google Scholar 

  9. Shaikh, A.A., Das, H., Sarwardi, S.: Dynamics of an eco-epidemiological system with disease in competitive prey species. J. Appl. Math. Comput. 1, 1–21 (2019)

    Google Scholar 

  10. Bulai, I.M., Hilker, F.M.: Eco-epidemiological interactions with predator interference and infection. Theor. Popul. Biol. 130, 191–202 (2019)

    MATH  Google Scholar 

  11. Mondal, A., Pal, A.K., Samanta, G.P.: Analysis of a delayed eco-epidemiological pest-plant model with infected pest. Biophys. Rev. Lett. 14, 141–170 (2019)

    Google Scholar 

  12. Juneja, N., Agnihotri, K.: Global stability of harvested prey–predator model with infection in predator species, In: Information and Decision Sciences, Springer, pp. 559–568 (2018)

  13. Biswas, S., Samanta, S., Chattopadhyay, J.: A cannibalistic eco-epidemiological model with disease in predator population. J. Appl. Math. Comput. 1, 1–37 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Maiti, A.P., Jana, C., Maiti, D.K.: A delayed eco-epidemiological model with nonlinear incidence rate and Crowley-Martin functional response for infected prey and predator. Nonlinear Dyn. 1, 1–31 (2019)

    Google Scholar 

  15. Hsieh, Y., Hsiao, C.: Predator-prey model with disease infection in both populations. Math. Med. Biol. J. IMA 25, 247–266 (2008)

    MATH  Google Scholar 

  16. Gao, X., Pan, Q., He, M., Kang, Y.: A predator-prey model with diseases in both prey and predator. Phys. A Stat. Mech. Appl. 392, 5898–5906 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Zhou, X., Cui, J.: Stability and Hopf bifurcation of a delay eco-epidemiological model with nonlinear incidence rate. Math. Model. Anal. 15, 547–569 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Saifuddin, M., Biswas, S., Samanta, S., Sarkar, S., Chattopadhyay, J.: Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. Chaos Solitons Fractals 91, 270–285 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Saha, S., Maiti, A., Samanta, G.P.: A Michaelis-Menten predator-prey model with strong Allee effect and disease in prey incorporating prey refuge. Int. J. Bifurc. Chaos 28, 1850073 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Peng, M., Zhang, Z., Lim, C.W., Wang, X.: Hopf bifurcation and hybrid control of a delayed ecoepidemiological model with nonlinear incidence rate and Holling type II functional response. Math. Prob. Eng. 1, 1–6 (2018)

    MathSciNet  MATH  Google Scholar 

  21. González-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Google Scholar 

  22. Pal, A.K., Samanta, G.P.: Stability analysis of an eco-epidemiological model incorporating a prey refuge. Nonlinear Anal. Model. Control 15, 473–491 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Kant, S., Kumar, V.: Analysis of an eco-epidemiological model with migrating and refuging prey, In: Mathematical Analysis and its Applications, Springer, pp. 17–36 (2015)

  24. Saha, S., Samanta, G.P.: Analysis of a predator-prey model with herd behavior and disease in prey incorporating prey refuge. Int. J. Biomath. 12, 1950007 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Mondal, S., Samanta, G.P.: Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator. Phys. A Stat. Mech. Appl. 534, 122301 (2019)

    MathSciNet  Google Scholar 

  26. Mondal, S., Samanta, G.P.: Dynamics of a delayed predator-prey interaction incorporating nonlinear prey refuge under the influence of fear effect and additional food. J. Phys. A Math. Theor. 5, 10–27 (2020)

    Google Scholar 

  27. Wang, S., Ma, Z., Wang, W.: Dynamical behavior of a generalized eco-epidemiological system with prey refuge. Adv. Diff. Equ. 2018, 244 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  29. Ford, N., Rodrigues, M.M., Vieira, N.: A numerical method for the fractional Schrödinger type equation of spatial dimension two. Fract. Calc. Appl. Anal. 16, 454–468 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Y., Yu, Y., Cui, X.: Dynamical behaviors analysis of memristor-based fractional-order complex-valued neural networks with time delay. Appl. Math. Comput. 339, 242–258 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Xiao, M., Zheng, W.X., Lin, J., Jiang, G., Zhao, L., Cao, J.: Fractional-order PD control at hopf bifurcations in delayed fractional-order small-world networks. J. Frankl. Inst. 354, 7643–7667 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Xu, C., Liao, M., Li, P.: Bifurcation of a fractional-order delayed malware propagation model in social networks. Discrete Dyn. Nat. Soc. 1, 10 (2019)

    MathSciNet  Google Scholar 

  33. Wang, Z., Xie, Y., Lu, J., Li, Y.: Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition. Appl. Math. Comput. 347, 360–369 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Danca, M.: Hidden chaotic attractors in fractional-order systems. Nonlinear Dyn. 89, 577–586 (2017)

    MathSciNet  Google Scholar 

  35. Alidousti, J., Ghahfarokhi, M.: Dynamical behavior of a fractional three-species food chain model. Nonlinear Dyn. 1, 1–18 (2018)

    MATH  Google Scholar 

  36. Ghanbari, B., Djilali, S.: Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population. Chaos Solitons Fractals 138, 109960 (2020)

    MathSciNet  Google Scholar 

  37. Khan, M.A., Ullah, S., Ullah, S., Farhan, M.: Fractional order SEIR model with generalized incidence rate. AIMS Math. 5, 2843 (2020)

    MathSciNet  Google Scholar 

  38. Yang, Y., Xu, L.: Stability of a fractional order SEIR model with general incidence. Appl. Math. Lett. 106303, 14 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Almeida, R., Cruz, B., Martins, N., Monteiro, T.: An epidemiological MSEIR model described by the Caputo fractional derivative. Int. J. Dyn. Control 5, 1–9 (2018)

    Google Scholar 

  40. Mondal, S., Lahiri, A., Bairagi, N.: Analysis of a fractional order eco-epidemiological model with prey infection and type 2 functional response. Math. Methods Appl. Sci. 40, 6776–6789 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Elsadany, A.A., Matouk, A.E.: Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. J. Appl. Math. Comput. 49, 269–283 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Nugraheni, K., Trisilowati, T., Suryanto, A.: Dynamics of a fractional order eco-epidemiological model. J. Trop. Life Sci. 7, 243–250 (2017)

    Google Scholar 

  43. Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge. Chaos Solitons Fractals 109, 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Matouk, A.E., Elsadany, A.A.: Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear Dyn. 85, 1597–1612 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Sambath, M., Ramesh, P., Balachandran, K.: Asymptotic behavior of the fractional order three species prey-predator model. Int. J. Nonlinear Sci. Numer. Simul. 19, 721–733 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Jajarmi, A., Baleanu, D.: A new fractional analysis on the interaction of HIV with CD4+ T-cells. Chaos Solitons Fractals 113, 221–229 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Dynamical analysis of a fractional-order Hantavirus infection model. Int. J. Nonlinear Sci. Numer. Simul. 21, 171–181 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Li, H., Muhammadhaji, A., Zhang, L., Teng, Z.: Stability analysis of a fractional-order predator-prey model incorporating a constant prey refuge and feedback control. Adv. Diff. Equ. 2018, 325 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Panja, P.: Dynamics of a fractional order predator-prey model with intraguild predation. Int. J. Model. Simul. 6, 1–13 (2019)

    Google Scholar 

  50. Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Stage structure and refuge effects in the dynamical analysis of a fractional order Rosenzweig-MacArthur prey-predator model. Prog. Fract. Differ. Appl. 5, 1–16 (2019)

    MATH  Google Scholar 

  51. El-Saka, H.A., Lee, S., Jang, B.: Dynamic analysis of fractional-order predator-prey biological economic system with Holling type II functional response. Nonlinear Dyn. 96, 407–416 (2019)

    MATH  Google Scholar 

  52. Wang, X., Wang, Z., Xia, J.: Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders. J. Frank. Inst. 356(15), 8278–8295 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Das, M., Samanta, G.P.: A prey-predator fractional order model with fear effect and group defense. Int. J. Dyn. Control 6, 1–16 (2020)

    Google Scholar 

  54. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  55. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    MathSciNet  MATH  Google Scholar 

  56. González-Parra, G., Arenas, A.J., Chen-Charpentier, B.M.: A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1). Math. Methods Appl. Sci. 37, 2218–2226 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Arenas, A.J., González-Parra, G., Chen-Charpentier, B.M.: Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Math. Comput. Simul. 121, 48–63 (2016)

    MathSciNet  Google Scholar 

  58. Das, M., Maiti, A., Samanta, G.P.: Stability analysis of a prey-predator fractional order model incorporating prey refuge. Ecol. Genet. Genom. 7, 33–46 (2018)

    Google Scholar 

  59. Li, H., Zhang, L., Hu, C., Jiang, Y., Teng, Z.: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 54, 435–449 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Cresson, J., Szafrańska, A.: Discrete and continuous fractional persistence problems-the positivity property and applications. Commun. Nonlinear Sci. Numer. Simul. 44, 424–448 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Choi, S.K., Kang, B., Koo, N.: Stability for Caputo fractional differential systems. Abstr. Appl. Anal. 2014, 1–6 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Matignon, D.: Stability results for fractional differential equations with applications to control processing, In: Computational Engineering in Systems Applications, Vol. 2, IMACS, IEEE-SMC Lille, France, pp. 963–968 (1996)

  63. Ahmed, E., El-Sayed, A., El-Saka, H.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Xiao, M.: Stability analysis and Hopf-type bifurcation of a fractional order Hindmarsh-Rose neuronal model. Adv. Neural Netw. ISNN 2012, 217–224 (2012)

    Google Scholar 

  65. Arshad, S., Baleanu, D., Huang, J., Tang, Y., Al-Qurashi, M.M.: Dynamical analysis of fractional order model of immunogenic tumors. Adv. Mech. Eng. 8, 1–13 (2016)

    Google Scholar 

  66. Vargas-De-León, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24, 75–85 (2015)

    MathSciNet  MATH  Google Scholar 

  67. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 26, 289–305 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Abdelouahab, M.S., Hamri, N., Wang, J.: Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn. 69, 275–284 (2012)

    MathSciNet  MATH  Google Scholar 

  69. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    MathSciNet  MATH  Google Scholar 

  70. Li, C., Tao, C.: On the fractional Adams method. Comput. Math. Appl. 58, 1573–1588 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial support of Universiti Sains Malaysia is acknowledged. We also acknowledge discussions with colleagues at various conferences.

Funding

This work was supported by the Fundamental Research Grant Scheme (Sponsor-Ministry of Education Malaysia (MOE) Acct No: 203/PMATHS/6711570), Bridging Grant scheme (Sponsor: Research Creativity and Management Office (RCMO), Universiti Sains Malaysia, Acct no: 304/PMATHS/6316285).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmoud Moustafa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, M., Mohd, M.H., Ismail, A.I. et al. Dynamical analysis of a fractional order eco-epidemiological model with nonlinear incidence rate and prey refuge. J. Appl. Math. Comput. 65, 623–650 (2021). https://doi.org/10.1007/s12190-020-01408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01408-6

Keywords

Mathematics Subject Classification

Navigation