Skip to main content
Log in

Aromatic Polysulfones: Strategies of Synthesis, Properties, and Application

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

The review summarizes the results of recent studies in the field of synthesis of polymers containing a sulfonic group. Various methods for obtaining polysulfones and their prospects from the point of view of practical implementation are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. K. Fink, High Performance Polymers (William Andrew Publishing, 2008).

    Google Scholar 

  2. R. Guo and J. E. McGrath, “Aromatic polyethers, polyetherketones, polysulfides, and polysulfones,” in Polymer Science: A Comprehensive Reference (Elsevier, 2012), pp. 377–430.

    Google Scholar 

  3. Z. Xu, J. Liao, H. Tang, and N. Li, “Antifouling polysulfone ultrafiltration membranes with pendent sulfonamide groups,” J. Membr. Sci. 548, 481–489 (2018).

    Article  CAS  Google Scholar 

  4. Q. Zhang, S. Zhang, et al., “Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material,” J. Membr. Sci. 349 (1), 217–224 (2010).

    Article  CAS  Google Scholar 

  5. A. M. Hidalgo, M. Gómez, M. D. Murcia, et al., “Behaviour of polysulfone ultrafiltration membrane for dyes removal,” J. Environ. Chem. Eng. 5 (4), 3991–3998 (2017).

    Article  Google Scholar 

  6. K. Zahri, K. C. Wong, et al., “Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation,” RSC Adv. 6 (92), 89130–89139 (2016).

    Article  CAS  Google Scholar 

  7. A. I. Akhmetshina, A. Mochalova, M. M. Trubyanov, A. A. Atlaskin, N. R. Yanbikov, A. Mechergui, K. V. Otvagina, E. N. Razov, and I. V. Vorotyntsev, “Acidic gases separation from gas mixtures on the SILMs providing the facilitated and solution-diffusion transport mechanisms,” Membranes 9 (1), 9–22 (2019).

    Article  Google Scholar 

  8. H. M. Park, K. Y. Jee, and Y. T. Lee, “Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks,” J. Membr. Sci. 541, 510–518 (2017).

    Article  CAS  Google Scholar 

  9. M. Herrero, A. M. Martos, A. Varez, et al., “Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuel cell application,” Int. J. Hydrogen Energy 39 (8), 4016–4022 (2014).

    Article  CAS  Google Scholar 

  10. M. Zhou, X. Chen, J. Pan, et al., “A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis,” Desalination 415, 29–39 (2017).

    Article  CAS  Google Scholar 

  11. Z. Yuan, X. Li, Y. Zhao, and H. Zhang, “Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery,” ACS Appl. Mater. Interfaces 7 (34), 19446–19454 (2015).

    Article  CAS  Google Scholar 

  12. X. Feng, Y. Shi, and Z. Huijuan, “Electrocatalytic enhancement of methanol oxidation by adding CeO2 nanoparticle on porous electrode,” J. Rare Earths 30 (1), 29–33 (2012).

    Article  CAS  Google Scholar 

  13. Z. S. Khasbulatova, “Aromatic polysulfones,” Plast. Massy, No. 4, 20–23 (2009).

    Google Scholar 

  14. K. T. Shakhmurzova, Zh. I. Kurdanova, A. A. Zhansitov, A. E. Baikaziev, S. Yu. Khashirova, S. I. Pakhomov, and M. Kh. Ligidov, “Synthesis and properties of aromatic carboxylic polyesters,” Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 60 (6), 28–40 (2017).

    CAS  Google Scholar 

  15. C. Dizman, M. A. Tasdelen, and Y. Yagci, “Recent advances in the preparation of functionalized polysulfones,” Pol. Int. 62 (7), 991–1007 (2013).

    CAS  Google Scholar 

  16. G. R. B. Seymour and S. Kirshenbaum, The Development of Polysulfone and Other Polyarylethers. High Performance Polymers: Their Origin and Development (Springer, 1986).

    Book  Google Scholar 

  17. R. A. Clendinning, CA Patent No. 847963 (1970).

  18. D.-D. Guo, Z.-Z. Huang, X.-Y. Sang, and S.-R. Sheng, “Novel cardo poly(arylene ether nitrile sulfone) copolymers bearing xanthene moiety in the main chain,” High Perform. Polym. 28 (7), 793–799.

  19. Y. Chen, R. Guo, C. H. Lee, et al., “Partly fluorinated poly(arylene ether ketone sulfone) hydrophilicehydrophobic multiblock copolymers for fuel cell membranes,” Int. J. Hydrogen Energy 37 (7), 6132–6139 (2012).

    Article  CAS  Google Scholar 

  20. H.-S. Lee, A. Roy, O. Lane, et al., “Synthesis and characterization of multiblock copolymers based on hydrophilic disulfonated poly(arylene ether sulfone) and hydrophobic partially fluorinated poly(arylene ether ketone) for fuel cell applications,” J. Polym. Sci. Part A: Polym. Chem. 48 (1), 214–222 (2010).

    Article  CAS  Google Scholar 

  21. R. Guo, O. Lane, D. VanHouten, and J. E. McGrath, “Synthesis and characterization of phenolphthalein-based poly(arylene ether sulfone) hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes,” Ind. Eng. Chem. Res. 49, 12125–12134 (2010).

    Article  CAS  Google Scholar 

  22. J. Han, K. Kim, J. Kim, et al., “Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application,” J. Membr. Sci. 579, 70–78 (2019).

    Article  CAS  Google Scholar 

  23. N. Ureña, M. T. Pérez-Prior, C. Río, et al., “Multiblock copolymers of sulfonated PSU/PPSU poly(ether sulfone)s as solid electrolytes for proton exchange membrane fuel cells,” Electrochim. Acta 302, 428–440 (2019).

    Article  Google Scholar 

  24. Z. Chang, G. B. Fahs, B. Zhang, et al., “New semicrystalline block copolymers of poly(arylene ether sulfone)s and poly(1,4-cyclohexylenedimethylene terephthalate),” Polymer 74, 86–93 (2015).

    Article  CAS  Google Scholar 

  25. S. C. Sutradhar, F. Ahmed, T. Ryu, et al., “A novel synthesis approach to partially fluorinated sulfonimide based poly (arylene ether sulfone)s for proton exchange membrane,” Polymer 74, 86–93 (2015).

    Article  Google Scholar 

  26. Y. Imai, M. Ueda, and M. Ii, “Synthesis of aromatic polyether by fluoride-anion-assisted polycondensation with potassium fluoride,” Makromol. Chem. 179 (12), 2989–2991 (1978).

    Article  CAS  Google Scholar 

  27. K. Matsumoto, H. Komuro, T. Kai, and M. Jikei, “Synthesis of poly(ether sulfone)s by self-polycondensation of AB-type monomers,” Polym. J. 45 (9), 909–914 (2013).

    Article  CAS  Google Scholar 

  28. W. Wei, L. Yang, and G. Chang, “Heat-resistant and photoluminescent indole-based poly(ether sulfone),” High Perform. Polym. 30 (4), 475–479 (2018).

    Article  CAS  Google Scholar 

  29. Md. M. Islam, H.-H. Jang, Y.-D. Lim, et al., “Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application,” Fuel Cells 12 (6), 978–986 (2012).

  30. Z. Hu, W. Tang, X. Zhang, et al., “Multiblock sulfonated poly(arylene ether sulfone)s with fluorenyl hydrophilic moieties for PEMFC applications,” J. Polym. Res. 23 (11) (2016).

  31. Y. Z. Zhuo, A. N. Lai, Q. G. Zhang, et al., “Highly ionic-conductive crosslinked cardo poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells,” J. Membr. Sci. 491, 138–148 (2015).

    Article  CAS  Google Scholar 

  32. H. R. Kricheldorf and G. Bier, “New polymer synthesis. IX. Synthesis of poly(ether sulfone)s from silylated diphenols or hydroxybenzoic acids,” J. Polym. Sci.: Polym. Chem. Ed. 21 (8), 2283–2289 (1983).

    CAS  Google Scholar 

  33. G. J. Summers, M. G. Kasiama, and C. A. Summers, “Poly(ether ether sulfone)s and sulfonated poly(ether ether sulfone)s derived from functionalized 1,1-diphenylethylene derivatives,” Polym. Int. 65 (7), 798–810 (2016).

    Article  CAS  Google Scholar 

  34. J. M. García, G. O. Jones, J. DeWinter, et al., “Meisenheimer complex inspired catalyst- and solvent-free synthesis of noncyclic poly(aryl ether sulfone)s,” Macromolecules 47 (23), 8131–8136 (2014).

    Article  Google Scholar 

  35. T. D. Shaffer and V. Percec, “Functional polymers and sequential copolymers by phase transfer catalysis, 21. Thermotropic aromatic poly(ether sulfone)s: A new class of thermotropic aromatic main-chain liquid crystalline polymers,” Makromol. Chem. 187 (6), 1431–1439 (1986).

    Article  CAS  Google Scholar 

  36. T. D. Shaffer and V. Percec, “Functional polymers and sequential copolymers by phase transfer catalysis, 20. synthesis of copolymers and alternating block copolymers containing thermotropic liquid crystalline polyethers and aromatic poly(ether sulfone) segments,” Makromol. Chem. 187 (1), 111–123 (1986).

    Article  Google Scholar 

  37. V. Percec, B. C. Auman, H. Nava, and J. P. Kennedy, “Functional polymers and sequential copolymers by phase transfer catalysis. XXVIII. Synthesis and characterization of alternating block copolymers and polyformals of polyisobutylene and aromatic polyether sulfone,” J. Polym. Sci., Part A: Polym. Chem. 26, 721–741 (1988).

    Article  CAS  Google Scholar 

  38. Z. S. Khasbulatova and G. B. Shustov, “Polysulfone-terephthaloyl-di (n-hydroxybenzoates),” Plast. Massy, No. 6, 24–26 (2010).

    Google Scholar 

  39. X. Xie, B. Huang, W. Zhou, and M. Cai, “Synthesis and properties of novel copolymers of poly(ether ketone ether ketone ketone) and poly(ether ketone ketone ether ketone ketone) containing 1,4-naphthylene moieties,” Polym. Eng. Sci. 56 (5), 566–572 (2016).

    Article  CAS  Google Scholar 

  40. H. Wen, P. Wang, S. Cheng, et al., “Synthesis and characterization of novel organosoluble poly(aryl ether ketone)s and poly(aryl ether ketone sulfone)s containing 1,4-naphthylene units,” High Perform. Polym. 27 (6), 705–713 (2015).

    Article  CAS  Google Scholar 

  41. M. Cai, M. Zhu, F. Xiao, et al., “Synthesis of copolymers of poly(ether sulfone ether ketone ketone) and poly(ether ketone diphenyl ketone ether ketone ketone) by electrophilic Friedel–Crafts solution polycondensation,” Polym. Adv. Technol. 22 (2), 254–261 (2011).

    Article  CAS  Google Scholar 

  42. H. R. J. Kricheldorf, “Cyclic polymers: Synthetic strategies and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 48 (2), 251–284 (2010).

    Article  CAS  Google Scholar 

  43. J. A. Cella, J. Fukuyama, and T. L. Guggenheim, “The preparation of novel oligomers,” Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 30 (2), 142 (1989).

  44. H. R. Kricheldorf, L. Vakhtangishvili, G. Schwarz, et al., “Macrocycles 25. Cyclic poly(ether sulfone)s derived from 4-tert-butylcatechol,” Polymer 44 (16), 4471–4480 (2003).

    Article  CAS  Google Scholar 

  45. Z. Y. Wang, H. N. Carvalho, and A. S. Hay, “New synthesis of poly(arylene ether)s using masked bisphenols,” J. Chem. Society, Chem. Commun., No. 17, 1221 (1991).

  46. I. Colon and G. T. Kwiatkowski, “High molecular weight aromatic polymers by nickel coupling of aryl polychlorides,” J. Polym. Sci. Part A, Polym. Chem. 28 (2), 367–383 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Deberdeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deberdeev, T.R., Akhmetshina, A.I., Karimova, L.K. et al. Aromatic Polysulfones: Strategies of Synthesis, Properties, and Application. Polym. Sci. Ser. D 13, 320–328 (2020). https://doi.org/10.1134/S1995421220030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421220030065

Keywords:

Navigation