Skip to main content

Advertisement

Log in

Oxygen Evolution and Reduction on Fe-doped NiOOH: Influence of Solvent, Dopant Position and Reaction Mechanism

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER) is the limiting factor in an electrolyzer and the oxygen reduction reaction (ORR) the limiting factor in a fuel cell. In OER, water is converted to O2 and H+/e pairs, while in ORR the reverse process happens to form water. Both reactions and their efficiency are important enablers of a hydrogen economy where hydrogen will act as a fuel or energy storage medium. OER and ORR can both be described assuming a four-step electrochemical mechanism with coupled H+/e transfers between four intermediates (M-*, M-OH, M = O, M-OOH, M = active metal site). Previously, it was shown for mixed metal-oxyhydroxides that an unstable M-OOH species can equilibrate to an M-OO species and a hydrogenated acceptor site (M-OOH/eq), enabling a bifunctional mechanism. Within OER, the presence of Fe within a nickel-oxyhydroxide (NiOOH) acceptor site was found to be beneficial to lower the required overpotential (Vandichel et al. in Chemcatchem 12(5):1436–1442, 2020). In this work, we present the first proof-of-concept study of various possible mechanisms (standard and bifunctional ones) for OER and ORR, i.e. we include now the active edge sites and hydrogen acceptor sites in the same model system. Furthermore, we consider water as solvent to describe the equilibration of the M-OOH species to M-OOH/eq, a crucial step that enables a bifunctional route to be operative. Additionally, different single Fe-dopant positions in an exfoliated NiOOH model are considered and four different reaction schemes are studied for OER and the reverse ORR process. The results are relevant in alkaline conditions, where the studied model systems are stable. Certain Fe-dopant positions result in active Ni-edge sites with very low overpotentials provided water is present within the model system.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294. https://doi.org/10.1038/nature11475

    Article  PubMed  CAS  Google Scholar 

  2. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102. https://doi.org/10.1126/science.1141483

    Article  PubMed  CAS  Google Scholar 

  3. Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38(12):4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151

    Article  CAS  Google Scholar 

  4. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. Chemcatchem 2(7):724–761. https://doi.org/10.1002/cctc.201000126

    Article  CAS  Google Scholar 

  5. Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660(2):254–260. https://doi.org/10.1016/j.jelechem.2010.10.004

    Article  CAS  Google Scholar 

  6. Kulkarni A, Siahrostami S, Patel A, Nørskov JK (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118(5):2302–2312. https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  PubMed  Google Scholar 

  7. Anson CW, Stahl SS (2020) Mediated fuel cells: soluble redox mediators and their applications to electrochemical reduction of O2 and oxidation of H2, alcohols, biomass, and complex fuels. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00717

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trasatti S (2000) Electrocatalysis: understanding the success of DSA (R). Electrochim Acta 45(15–16):2377–2385. https://doi.org/10.1016/S0013-4686(00)00338-8

    Article  CAS  Google Scholar 

  9. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365. https://doi.org/10.1039/C6CS00328A

    Article  PubMed  CAS  Google Scholar 

  10. Bode H, Dehmelt K, Witte J (1966) Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat. Electrochim Acta 11(8):1071–1079. https://doi.org/10.1016/0013-4686(66)80045-2

    Article  Google Scholar 

  11. Corrigan DA (1987) The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J Electrochem Soc 134(2):377–384. https://doi.org/10.1149/1.2100463

    Article  CAS  Google Scholar 

  12. El Wakkad SES, Hickling A (1950) The anodic behaviour of metals. Part VI.—Cobalt. Trans Faraday Soc 46:820–824. https://doi.org/10.1039/TF9504600820

    Article  CAS  Google Scholar 

  13. Młynarek G, Paszkiewicz M, Radniecka A (1984) The effect of ferric ions on the behaviour of a nickelous hydroxide electrode. J Appl Electrochem 14(2):145–149. https://doi.org/10.1007/bf00618733

    Article  Google Scholar 

  14. Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22(4):325–328. https://doi.org/10.1016/0013-4686(77)85081-0

    Article  CAS  Google Scholar 

  15. Schultze JW, Mohr S, Lohrengel MM (1983) Electrode reactions at modified surfaces dependent on the reaction site: γ-FeOOH as example. J Electroanal Chem Interfacial Electrochem 154(1):57–68. https://doi.org/10.1016/S0022-0728(83)80531-2

    Article  CAS  Google Scholar 

  16. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136(18):6744–6753. https://doi.org/10.1021/ja502379c

    Article  PubMed  CAS  Google Scholar 

  17. Cheng F, Feng X, Chen X, Lin W, Rong J, Yang W (2017) Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochim Acta 251:336–343. https://doi.org/10.1016/j.electacta.2017.08.098

    Article  CAS  Google Scholar 

  18. Song F, Busch MM, Lassalle-Kaiser B, Hsu C-S, Petkucheva E, Bensimon M, Chen HM, Corminboeuf C, Hu X (2019) An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Central Science. https://doi.org/10.1021/acscentsci.9b00053

    Article  PubMed  PubMed Central  Google Scholar 

  19. Klaus S, Louie MW, Trotochaud L, Bell AT (2015) Role of Catalyst preparation on the electrocatalytic activity of Ni1–xFexOOH for the oxygen evolution reaction. J Phys Chem C 119(32):18303–18316. https://doi.org/10.1021/acs.jpcc.5b04776

    Article  CAS  Google Scholar 

  20. Li Y-F, Selloni A (2014) Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal 4(4):1148–1153. https://doi.org/10.1021/cs401245q

    Article  CAS  Google Scholar 

  21. Safdari T, Akbari N, Valizadeh A, Bagheri R, Song Z, Allakhverdiev SI, Najafpour MM (2020) Iron–nickel oxide: a promising strategy for water oxidation. New J Chem 44(4):1517–1523. https://doi.org/10.1039/C9NJ05644K

    Article  CAS  Google Scholar 

  22. Madadkhani S, Aghakhanpour RB, Singh JP, Bagheri R, Chae KH, Song Z, Najafpour MM (2019) A trimetallic organometallic precursor for efficient water oxidation. Sci Rep 9(1):3734. https://doi.org/10.1038/s41598-019-40236-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Najafpour MM, Moghaddam NJ (2017) Iron oxide deposited on metallic nickel for water oxidation. Sustain Energy Fuels 1(3):658–663. https://doi.org/10.1039/C7SE00064B

    Article  CAS  Google Scholar 

  24. Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013) Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc 135(31):11580–11586. https://doi.org/10.1021/ja403102j

    Article  PubMed  CAS  Google Scholar 

  25. Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng MJ, Sokaras D, Weng TC, Alonso-Mori R, Davis RC, Bargar JR, Norskov JK, Nilsson A, Bell AT (2015) Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 137(3):1305–1313. https://doi.org/10.1021/ja511559d

    Article  PubMed  CAS  Google Scholar 

  26. Xiao H, Shin H, Goddard WA (2018) Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc Natl Acad Sci 115(23):5872–5877. https://doi.org/10.1073/pnas.1722034115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Jin Y, Huang S, Yue X, Du H, Shen PK (2018) Mo- and Fe-Modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal 8(3):2359–2363. https://doi.org/10.1021/acscatal.7b04226

    Article  CAS  Google Scholar 

  28. Costanzo F (2016) Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations. Phys Chem Chem Phys 18(10):7490–7501. https://doi.org/10.1039/C5CP06905J

    Article  PubMed  CAS  Google Scholar 

  29. Vandichel M, Busch M, Laasonen K (2020) Oxygen Evolution on Metal-oxy-hydroxides: Beneficial Role of Mixing Fe Co, Ni Explained via Bifunctional Edge/acceptor Route. Chemcatchem 12(5):1436–1442. https://doi.org/10.1002/cctc.201901951

    Article  CAS  Google Scholar 

  30. Li Z, Niu W, Yang Z, Zaman N, Samarakoon W, Wang M, Kara A, Lucero M, Vyas MV, Cao H, Zhou H, Sterbinsky GE, Feng Z, Du Y, Yang Y (2020) Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy Environ Sci 13(3):884–895. https://doi.org/10.1039/C9EE02657F

    Article  CAS  Google Scholar 

  31. Wang G, Yang Z, Du Y, Yang Y (2019) Programmable exposure of Pt active facets for efficient oxygen reduction. Angew Chem Int Ed 58(44):15848–15854. https://doi.org/10.1002/anie.201907322

    Article  CAS  Google Scholar 

  32. Back S, Hansen MH, Garrido Torres JA, Zhao Z, Nørskov JK, Siahrostami S, Bajdich M (2019) Prediction of stable and active (Oxy-Hydro) oxide nanoislands on noble-metal supports for electrochemical oxygen reduction reaction. ACS Appl Mater Interfaces 11(2):2006–2013. https://doi.org/10.1021/acsami.8b15428

    Article  PubMed  CAS  Google Scholar 

  33. Cao R, Lai W, Du P (2012) Catalytic water oxidation at single metal sites. Energy Environ Sci 5(8):8134–8157. https://doi.org/10.1039/C2EE21494F

    Article  CAS  Google Scholar 

  34. Betley TA, Wu Q, Van Voorhis T, Nocera DG (2008) Electronic design criteria for O− O bond formation via metal− oxo complexes. Inorg Chem 47(6):1849–1861. https://doi.org/10.1021/ic701972n

    Article  PubMed  CAS  Google Scholar 

  35. Kondov I, Faubert P, Müller C (2017) Activity and electrochemical stability of a chromium modified nickel catalyst for oxygen reduction reaction. Electrochim Acta 236:260–272. https://doi.org/10.1016/j.electacta.2017.03.123

    Article  CAS  Google Scholar 

  36. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemcatchem 3(7):1159–1165. https://doi.org/10.1002/cctc.201000397

    Article  CAS  Google Scholar 

  37. Rossmeisl J, Logadottir A, Norskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319(1–3):178–184. https://doi.org/10.1016/j.chemphys.2005.05.038

    Article  CAS  Google Scholar 

  38. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89. https://doi.org/10.1016/j.jelechem.2006.11.008

    Article  CAS  Google Scholar 

  39. Busch M (2018) Water Oxidation: From Mechanisms to Limitations. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2018.06.007

    Article  Google Scholar 

  40. Busch M, Ahlberg E, Panas I (2011) Electrocatalytic oxygen evolution from water on a Mn(III-V) dimer model catalyst-A DFT perspective. Phys Chem Chem Phys 13(33):15069–15076. https://doi.org/10.1039/c0cp02132f

    Article  PubMed  CAS  Google Scholar 

  41. Bockris JO, Otagawa T (1983) Mechanism of oxygen evolution on perovskites. J Phys Chem Us 87(15):2960–2971. https://doi.org/10.1021/j100238a048

    Article  CAS  Google Scholar 

  42. Busch M (2018) Water oxidation: From mechanisms to limitations. Curr Opin Electrochem 9:278–284. https://doi.org/10.1016/j.coelec.2018.06.007

    Article  CAS  Google Scholar 

  43. Busch M, Halck NB, Kramm UI, Siahrostami S, Krtil P, Rossmeisl J (2016) Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29:126–135. https://doi.org/10.1016/j.nanoen.2016.04.011

    Article  CAS  Google Scholar 

  44. Frydendal R, Busch M, Halck NB, Paoli EA, Krtil P, Chorkendorff I, Rossmeisl J (2015) Enhancing activity for the oxygen evolution reaction: the beneficial interaction of gold with manganese and cobalt oxides. Chemcatchem 7(1):149–154. https://doi.org/10.1002/cctc.201402756

    Article  CAS  Google Scholar 

  45. Martirez JMP, Carter EA (2019) Unraveling oxygen evolution on iron-doped β-nickel oxyhydroxide: the key role of highly active molecular-like sites. J Am Chem Soc 141(1):693–705. https://doi.org/10.1021/jacs.8b12386

    Article  PubMed  CAS  Google Scholar 

  46. Tkalych AJ, Martirez JMP, Carter EA (2018) Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001). Phys Chem Chem Phys 20(29):19525–19531. https://doi.org/10.1039/c8cp02849d

    Article  PubMed  CAS  Google Scholar 

  47. Shin H, Xiao H, Goddard WA (2018) In silico discovery of new dopants for Fe-doped ni oxyhydroxide (Ni1–xFexOOH) catalysts for oxygen evolution reaction. J Am Chem Soc 140(22):6745–6748. https://doi.org/10.1021/jacs.8b02225

    Article  PubMed  CAS  Google Scholar 

  48. Faubert P, Kondov I, Qazzazie D, Yurchenko O, Müller C (2018) A non-noble Cr–Ni-based catalyst for the oxygen reduction reaction in alkaline polymer electrolyte fuel cells. MRS Commun 8(1):160–167. https://doi.org/10.1557/mrc.2018.13

    Article  CAS  Google Scholar 

  49. Ping Y, Nielsen RJ, Goddard WA 3rd (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO(2) (110) surface. J Am Chem Soc 139(1):149–155. https://doi.org/10.1021/jacs.6b07557

    Article  PubMed  CAS  Google Scholar 

  50. Younus HA, Ahmad N, Chughtai AH, Vandichel M, Busch M, Van Hecke K, Yusubov M, Song SX, Verpoort F (2017) A robust molecular catalyst generated in situ for photoand electrochemical water oxidation. Chemsuschem 10(5):862–875. https://doi.org/10.1002/cssc.201601477

    Article  PubMed  CAS  Google Scholar 

  51. Younus HA, Vandichel M, Ahmad N, Ahlberg E, Busch M, Verpoort F (2020) Engineering of a highly stable metal-organic Co-film for efficient electrocatalytic water oxidation in acidic media. Mater Today Energy 17:100437. https://doi.org/10.1016/j.mtener.2020.100437

    Article  Google Scholar 

  52. Martirez JMP, Carter EA (2018) Effects of the aqueous environment on the stability and chemistry of beta-NiOOH surfaces. Chem Mater 30(15):5205–5219. https://doi.org/10.1021/acs.chemmater.8b01866

    Article  CAS  Google Scholar 

  53. Mathew K, Kolluru VSC, Mula S, Steinmann SN, Hennig RG (2019) Implicit self-consistent electrolyte model in plane-wave density-functional theory. J Chem Phys 151(23):234101. https://doi.org/10.1063/1.5132354

    Article  PubMed  CAS  Google Scholar 

  54. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140(8):084106. https://doi.org/10.1063/1.4865107

    Article  PubMed  CAS  Google Scholar 

  55. Garcia-Ratés M, López N (2016) Multigrid-based methodology for implicit solvation models in periodic DFT. J Chem Theory Comput 12(3):1331–1341. https://doi.org/10.1021/acs.jctc.5b00949

    Article  PubMed  CAS  Google Scholar 

  56. Siahrostami S, Vojvodic A (2015) Influence of adsorbed water on the oxygen evolution reaction on oxides. J Phys Chem C 119(2):1032–1037. https://doi.org/10.1021/jp508932x

    Article  CAS  Google Scholar 

  57. Gauthier JA, Dickens CF, Chen LD, Doyle AD, Nørskov JK (2017) Solvation effects for oxygen evolution reaction catalysis on IrO2(110). J Phys Chem C 121(21):11455–11463. https://doi.org/10.1021/acs.jpcc.7b02383

    Article  CAS  Google Scholar 

  58. Hansen MH, Rossmeisl J (2016) pH in grand canonical statistics of an electrochemical interface. J Phys Chem C 120(51):29135–29143. https://doi.org/10.1021/acs.jpcc.6b09019

    Article  CAS  Google Scholar 

  59. Partanen L, Murdachaew G, Laasonen K (2018) Oxygen evolution reaction kinetic barriers on nitrogen-doped carbon nanotubes. J Phys Chem C 122(24):12892–12899. https://doi.org/10.1021/acs.jpcc.8b03269

    Article  CAS  Google Scholar 

  60. Cipa-Karhu G, Pakkanen OJ, Laasonen K (2019) Hydrogen evolution reaction on the single-shell carbon-encapsulated iron nanoparticle: a density functional theory insight. J Phys Chem C 123(22):13569–13577. https://doi.org/10.1021/acs.jpcc.9b01041

    Article  CAS  Google Scholar 

  61. Holmberg N, Laasonen K (2015) Ab initio electrochemistry: exploring the hydrogen evolution reaction on carbon nanotubes. J Phys Chem C 119(28):16166–16178. https://doi.org/10.1021/acs.jpcc.5b04739

    Article  CAS  Google Scholar 

  62. Cilpa-Karhu G, Pakkanen OJ, Laasonen K (2019) Hydrogen evolution reaction on the single-shell carbon-encapsulated iron nanoparticle: a density functional theory insight. J Phys Chem C 123(22):13569–13577. https://doi.org/10.1021/acs.jpcc.9b01041

    Article  CAS  Google Scholar 

  63. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. https://doi.org/10.1002/jcc.21224

    Article  PubMed  CAS  Google Scholar 

  64. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5:4477. https://doi.org/10.1038/ncomms5477

  65. Murphy TP, Hutchins MG (1995) Oxidation states in nickel oxide electrochromism. Sol Energy Mater Sol Cells 39(2):377–389. https://doi.org/10.1016/0927-0248(96)80003-1

    Article  CAS  Google Scholar 

  66. Zhou Y, López N (2020) The role of Fe species on NiOOH in oxygen evolution reactions. ACS Catal 10(11):6254–6261. https://doi.org/10.1021/acscatal.0c00304

    Article  CAS  Google Scholar 

  67. Francàs L, Corby S, Selim S, Lee D, Mesa CA, Godin R, Pastor E, Stephens IEL, Choi K-S, Durrant JR (2019) Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat Commun 10(1):5208. https://doi.org/10.1038/s41467-019-13061-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Görlin M, Ferreira de Araújo J, Schmies H, Bernsmeier D, Dresp S, Gliech M, Jusys Z, Chernev P, Kraehnert R, Dau H, Strasser P (2017) Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J Am Chem Soc 139(5):2070–2082. https://doi.org/10.1021/jacs.6b12250

    Article  PubMed  CAS  Google Scholar 

  69. Trzesniewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MTM, Smith WA (2015) In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J Am Chem Soc 137(48):15112–15121. https://doi.org/10.1021/jacs.5b06814

    Article  PubMed  CAS  Google Scholar 

  70. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167(2):103–128. https://doi.org/10.1016/j.cpc.2004.12.014

    Article  CAS  Google Scholar 

  71. Lippert G, Hutter J, Parrinello M (1999) The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor Chem Acc 103(2):124–140. https://doi.org/10.1007/s002140050523

    Article  CAS  Google Scholar 

  72. Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92(3):477–487. https://doi.org/10.1080/002689797170220

    Article  CAS  Google Scholar 

  73. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  74. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  75. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  CAS  Google Scholar 

  76. Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85(23):235149. https://doi.org/10.1103/PhysRevB.85.235149

    Article  CAS  Google Scholar 

  77. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  78. Jain A, Ong SP, Chen W, Medasani B, Qu X, Kocher M, Brafman M, Petretto G, Rignanese G-M, Hautier G, Gunter D, Persson KA (2015) FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr Comput: Pract Exp 27(17):5037–5059. https://doi.org/10.1002/cpe.3505

    Article  Google Scholar 

  79. Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Bjerre Jensen P, Kermode J, Kitchin JR, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment—a Python library for working with atoms. J Phys: Condens Matter 29(27):273002. https://doi.org/10.1088/1361-648x/aa680e

    Article  CAS  Google Scholar 

  80. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892. https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  81. Hansen HA, Rossmeisl J, Nørskov JK (2008) Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10(25):3722–3730. https://doi.org/10.1039/B803956A

    Article  PubMed  CAS  Google Scholar 

  82. Karlberg GS, Rossmeisl J, Nørskov JK (2007) Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys 9(37):5158–5161. https://doi.org/10.1039/B705938H

    Article  PubMed  CAS  Google Scholar 

  83. Besley L, Bottomley GA (1973) Vapour pressure of normal and heavy water from 273.15 to 298.15 K. J Chem Thermodyn 5(3):397–410. https://doi.org/10.1016/S0021-9614(73)80031-X

    Article  CAS  Google Scholar 

  84. Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389–397. https://doi.org/10.1063/1.2436891

    Article  CAS  Google Scholar 

  85. NIST Chemistry WebBook. NIST standard reference database number 69. In: Linstrom PJ, Mallard WG (eds) National Institute of Standards and Technology. Gaithersburg, MD, 20899. Retrieved July 21, 2020. https://doi.org/10.18434/T4D303

  86. Stevens MB, Enman LJ, Korkus EH, Zaffran J, Trang CDM, Asbury J, Kast MG, Toroker MC, Boettcher SW (2019) Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res 12(9):2288–2295. https://doi.org/10.1007/s12274-019-2391-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed on the supercomputer ForHLR funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research. Some preliminary and/or exploratory calculations were also performed at ICHEC (Ireland) and CSC (Finland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Vandichel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11244_2020_1334_MOESM1_ESM.docx

Reaction schemes S1-S4, summarizing tables and additional information are provided in the Electronic Supplementary Information. (DOCX 1817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandichel, M., Laasonen, K. & Kondov, I. Oxygen Evolution and Reduction on Fe-doped NiOOH: Influence of Solvent, Dopant Position and Reaction Mechanism. Top Catal 63, 833–845 (2020). https://doi.org/10.1007/s11244-020-01334-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01334-8

Keywords

Navigation