Skip to main content
Log in

Trajectory and image-based detection and identification of UAV

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Much more attentions have been attracted to the inspection and prevention of unmanned aerial vehicle (UAV) in the wake of increasing high frequency of security accident. Many factors like the interferences and the small fuselage of UAV pose challenges to the timely detection of the UAV. In our work, we present a system that is capable of detecting, recognizing, and tracking an UAV using single camera automatically. For our method, a single pan–tilt–zoom (PTZ) camera detects flying objects and gets their trajectories; then, the trajectory identified as a UAV guides the camera and PTZ to capture the detailed region image of the target. Therefore, the images can be classified into the UAV and interference classes (such as birds) by the convolution neural network classifier trained with our image dataset. For the target recognized as a UAV with the double verification, the radio jammer emits the interferential radio to disturb its control radio and GPS. This system could be applied in some complex environment where many birds and UAV appear simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvine, C.: Drone carrying explosives almost assassinates Venezuela’s president. https://www.techzim.co.zw/2018/08/drone-carrying-explosives-almost-assassinates-venezuelas-president/ (2018). Accessed 06 Aug 2018

  2. Samaras, S., Diamantidou, E., Ataloglou, D., Sakellariou, N., Vafeiadis, A., Magoulianitis, V., Lalas, A., Dimou, A., Zarpalas, D., Votis, K.: Deep learning on multi sensor data for counter uav applications: a systematic review. Sensors 19(22), 4837 (2019)

    Article  Google Scholar 

  3. Molchanov, P., Harmanny, R.I.A., de Wit, J.J.M., Egiazarian, K., Astola, J.: Classification of small UAVs and birds by micro-Doppler signatures. Int. J. Microw. Wirel. Technol. 6(3–4), 435–444 (2014)

    Article  Google Scholar 

  4. Chenchen, J.H., Ling, H.: An investigation on the radar signatures of small consumer drones. IEEE Antennas Wirel. Propag. 16, 649–652 (2017)

    Article  Google Scholar 

  5. Mohajerin, N., Histon, J., Dizaji, R., Waslander, S.L.: Feature extraction and radar track classification for detecting UAVs in civillian airspace. In: 2014 IEEE Radar Conference. 0674-0679 (2014)

  6. Shin, D.H., Jung, D.H., Kim, D.C., Ham, J.W., Park, S.O.: A distributed FMCW radar system based on fiber-optic links for small drone detection. IEEE Trans. Instrum. Meas. 66(2), 340–347 (2017)

    Article  Google Scholar 

  7. Schumann, A., Sommer, L., Müller, T., Voth, S.: An image processing pipeline for long range UAV detection. Int. Soc. Opt. Photon. 10799, 107990T (2018)

    Google Scholar 

  8. Unlu, E., Zenou, E., Rivière, N.: Using shape descriptors for UAV detection. Electron. Imaging 2018(9), 1–5 (2018)

    Article  Google Scholar 

  9. Rozantsev, A., Lepetit, V., Fua, P.: Detecting flying objects using a single moving camera. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 879–892 (2017)

    Article  Google Scholar 

  10. Kapoor, A., Biswas, K., Hanmandlu, M.: An evolutionary learning based fuzzy theoretic approach for salient object detection. Vis. Comput. 33(5), 665–685 (2017)

    Article  Google Scholar 

  11. Yu, C., Hongbing, M., Xinling, W., Pengge, M., Yuxin, Q., Zhengxiang, M., Zhaoyu, L.: Classification methods of a small sample target object in the sky based on the higher layer visualizing feature and transfer learning deep networks. EURASIP J. Wirel. Commun. Netw. 2018(1), 127 (2018)

    Article  Google Scholar 

  12. Aker, C., Kalkan, S.: Using deep networks for drone detection. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS). pp. 1–6 (2017)

  13. Yoshihashi, R., Trinh, T.T., Kawakami, R., You, S., Iida, M., Naemura, T.: Differentiating objects by motion: joint detection and tracking of small flying objects (2017). arXiv preprint arXiv:1709.04666

  14. Eren, U., Emmanuel, Z., Nicolas, R.: Generic fourier descriptors for autonomous UAV detection. In: 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM). vol 1, pp. 550–554 (2018). https://doi.org/10.5220/0006680105500554

  15. Park, J., Kim, D.H., Shin, Y.S., Lee, S.: A comparison of convolutional object detectors for real-time drone tracking using a PTZ camera. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 696–699 (2017)

  16. Anwar, M.Z., Kaleem, Z., Jamalipour, A.: Machine learning inspired sound-based amateur drone detection for public safety applications. IEEE Trans. Veh. Technol. 68(3), 2526–2534 (2019)

    Article  Google Scholar 

  17. Xuejun, Y., Yongxin, L., Jian, W., Houbing, S., Huiru, C.: Software defined radio and wireless acoustic networking for amateur drone surveillance. IEEE Commun. Mag. 56(4), 90–97 (2018)

    Article  Google Scholar 

  18. Andraši, P., Radišić, T., Muštra, M., Ivošević, J.: Night-time detection of UAVs using thermal infrare camera. Transp. Res. Procedia 28, 183–190 (2017)

    Article  Google Scholar 

  19. Nguyen, P., Ravindranatha, M., Nguyen, A., Han, R., Vu, T.: Investigating cost-effective RF-based detection of drones. In: Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pp. 17–22 (2016)

  20. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  21. McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization. Citeseer, vol.752, no. 1, pp. 41–48 (1998)

  22. Dalal, H., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

  23. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. 21(3), 269–281 (1972)

    Article  MathSciNet  Google Scholar 

  24. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: European Conference on Computer Vision (ECCV), pp. 404–417 (2006)

  25. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

  26. Shaoqing, R., Kaiming, He, Girshick, R., Jian, S.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (NIPS), vol. 39, no. 6, pp. 1137–1149 (2017)

  27. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)

  28. Craye, C., Ardjoune, S.: Spatio-temporal semantic segmentation for drone detection. In: 2019 16th IEEE International conference on advanced video and signal based surveillance (AVSS), pp. 1–6 (2019)

  29. Magoulianitis, V., Ataloglou, D., Dimou, A., Zarpalas, D., Daras, P.: Does deep super-resolution enhance UAV detection?. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2019)

  30. Coluccia, A., Fascista, A., Schumann, A., Sommer, L., Ghenescu, M., Piatrik, T., Sharma, N.: Drone-vs-Bird detection challenge at IEEE AVSS2019. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). pp. 1–7 (2019)

  31. Wei, L., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: European Conference on Computer Vision (ECCV), pp. 21–37 (2016)

  32. Kaiming, H., Xiangyu, Z., Ren, S., Jian, S.: Deep residual learning for image recognition. In: IEEE Conference on Computer Cision and Pattern Recognition (CVPR), pp. 770–778 (2016)

  33. Ioffe, S., Szegedy, C.: Batch Normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), vol 37, no 9, pp 448–456 (2015)

  34. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML), vol 27, pp 807–814 (2010)

  35. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from over. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  37. Ketkar, N.: Introduction to PyTorch. In: Deep Learning with Python, pp. 195–208. Springer, Berlin (2017)

Download references

Acknowledgements

This research was partially supported by research grants from the National Natural Science Foundation of China (Grant No.: 61571314) and the Sky Defence Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liao, L., Wu, H. et al. Trajectory and image-based detection and identification of UAV. Vis Comput 37, 1769–1780 (2021). https://doi.org/10.1007/s00371-020-01937-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01937-y

Keywords

Navigation