Skip to main content
Log in

Optical properties of two-walled carbon nanotubes: quasi-static approximation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, some optical properties of a two-walled carbon nanotube are studied. The system is represented by two infinitely long and infinitesimally thin coaxial cylindrical shells, each containing a two-dimensional electron nano-fluid. The quasi-static approximation and the quantum hydrodynamic model are adopted in order to obtain the optical response of the system. General expressions for polarizability, dispersion of dipole surface plasmons and induced surface charges of the system are derived, by solving the Laplace and fluid equations with appropriate boundary conditions. Also, by using the polarizability formula, scattering, absorption and extinction spectra are computed and expressed in terms of widths, which are defined as the cross sections per unit length of the system. Furthermore, the Maxwell-Garnett theory for the effective medium approximation of composite materials is developed to the effective dielectric function of a composite of aligned two-walled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. R. Kuzuo, M. Terauchi, M. Tanaka, Jpn. J. Appl. Phys. 31, L1484 (1992)

    Article  ADS  Google Scholar 

  3. T. Pichler, M. Knupfer, M.S. Golden, J. Fink, A. Rinzler, R.E. Smalley, Phys. Rev. Lett. 80, 4729 (1998)

    Article  ADS  Google Scholar 

  4. P. Longe, S.M. Bose, Phys. Rev. B 48, 18239 (1993)

    Article  ADS  Google Scholar 

  5. C. Yannouleas, E.N. Bogachek, U. Landman, Phys. Rev. B 53, 10225 (1996)

    Article  ADS  Google Scholar 

  6. M.R. Eid, A.F. Al-Hossainy, M.S. Zoromba, Commun. Theor. Phys. 71, 1425 (2019)

    Article  ADS  Google Scholar 

  7. A. Gallerati, Eur. Phys. J. Plus 134, 202 (2019)

    Article  Google Scholar 

  8. T. Stockli, J.M. Bonard, A. Chatelain, Z.L. Wang, P. Stadelmann, Phys. Rev. B 64, 115424 (2001)

    Article  ADS  Google Scholar 

  9. Y.N. Wang, Z.L. Miskovic, Phys. Rev. A 69, 022901 (2004)

    Article  ADS  Google Scholar 

  10. A. Moradi, JETP Lett. 88, 795 (2008)

    Article  ADS  Google Scholar 

  11. A. Moradi, Problems in electrostatic approximation, in Canonical Problems in the Theory of Plasmonics (Springer Series in Optical Sciences, Springer, Switzerland, Cham, 2020), vol. 230

  12. A. Moradi, Photon. Nanostruct. Fundam. Appl. 11, 85 (2013)

    Article  ADS  Google Scholar 

  13. A. Moradi, Appl. Phys. A 113, 97 (2013)

    Article  ADS  Google Scholar 

  14. A. Moradi, Phys. Plasmas 17, 033504 (2010)

    Article  ADS  Google Scholar 

  15. A. Moradi, Phys. Plasmas 21, 032106 (2014)

    Article  ADS  Google Scholar 

  16. A. Moradi, J. Appl. Phys. 122, 133103 (2017)

    Article  ADS  Google Scholar 

  17. I. Maeng, C. Kang, S.J. Oh, J.H. Son, K.H. An, Y.H. Lee, Appl. Phys. Lett. 90, 051914 (2007)

    Article  ADS  Google Scholar 

  18. M.V. Shuba, G.Y. Slepyan, S.A. Maksimenko, C. Thomsen, A. Lakhtakia, Phys. Rev. B 79, 155403 (2009)

    Article  ADS  Google Scholar 

  19. T. Muhammad, D.C. Lu, B. Mahanthesh, M.R. Eid, M. Ramzan, A. Dar, Commun. Theor. Phys. 70, 361 (2018)

    Article  ADS  Google Scholar 

  20. A.A. Green, M.C. Hersam, ACS Nano 5, 1459 (2011)

    Article  Google Scholar 

  21. Z.K. Heiba, M.B. Mohamed, N.G. Imam, A.M. El-Naggar, J. Supercond. Nov. Magn. 33, 1439 (2020)

    Article  Google Scholar 

  22. C.Q. Ru, J. Mech. Phys. Solids 49, 1265 (2001)

    Article  ADS  Google Scholar 

  23. X.Q. He, M. Eisenberger, K.M. Liew, J. Appl. Phys. 100, 124317 (2006)

    Article  ADS  Google Scholar 

  24. M. Strozzi, F. Pellicano, Math. Mech. Solids 23, 1456 (2018)

    Article  MathSciNet  Google Scholar 

  25. B.E. Sernelius, Van der waals interaction in cylindrical structures, in Fundamentals of van der Waals and Casimir Interactions (Springer Series on Atomic, Optical, and Plasma Physics, Springer, Switzerland, Cham, 2018), vol. 102

  26. G. Gumbs, A. Balassis, P. Fekete, Phys. Rev. B 73, 075411 (2006)

    Article  ADS  Google Scholar 

  27. D.J. Mowbray, S. Chung, Z.L. Miskovic, F.O. Goodman, Y.N. Wang, Nucl. Instrum. Methods Phys. Res. B 230, 142 (2005)

    Article  ADS  Google Scholar 

  28. A. Moradi, Phys. Plasmas 22, 032112 (2015)

    Article  ADS  Google Scholar 

  29. L. Calliari, S. Fanchenko, M. Filippi, Carbon 45, 1410 (2007)

    Article  Google Scholar 

  30. S. Tasaki, K. Maekawa, T. Yamabe, Phys. Rev. B 57, 9301 (1998)

    Article  ADS  Google Scholar 

  31. D.J. Mowbray, S. Segui, J. Gervasoni, Z.L. Miskovic, N.R. Arista, Phys. Rev. B 82, 035405 (2010)

    Article  ADS  Google Scholar 

  32. C. Rizal, V. Belotelov, Eur. Phys. J. Plus 134, 435 (2019)

    Article  Google Scholar 

  33. A. Moradi, J. Opt. Soc. Am. B 29, 625 (2012)

    Article  ADS  Google Scholar 

  34. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  35. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Phys. Scr. 94, 105208 (2019)

    Article  ADS  Google Scholar 

  36. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Mater. Chem. Phys. 232, 180 (2019)

    Article  Google Scholar 

  37. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, J. Electr. Mater. 48, 8107 (2019)

    Article  ADS  Google Scholar 

  38. R. Chang, H.-P. Chiang, P.T. Leung, D.P. Tsai, W.S. Tse, Solid State Commun. 133, 315 (2005)

    Article  ADS  Google Scholar 

  39. J.T. Manassah, Phys. Rev. A 88, 035803 (2013)

    Article  ADS  Google Scholar 

  40. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984)

    Book  Google Scholar 

  41. G.B. Smith, J. Phys. D: Appl. Phys. 10, L39 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Moradi.

Appendix: An alternative derivation of effective permittivity of a composite of aligned 2WCNTs

Appendix: An alternative derivation of effective permittivity of a composite of aligned 2WCNTs

In this alternative approach, we consider a 2WCNT plus surrounding dielectric shell (here, air) placed in the effective medium. The effective dielectric permittivity of the system \(\varepsilon _{\mathrm {eff}}\) can be determined by requiring that this 2WCNT produce no perturbation of the electric field in the surrounding medium [41]. Therefore, the system to be studied is a 2WCNT with external radius \(a_{2}\) that is enclosed within a dielectric cylinder of radius \(a_{3}\). The volume between \(a_{2}\) and \(a_{3}\) represents the average envelope per particle and \(f=a_{2}^{2}/a_{3}^{2}\). In this regard, we assume the new system, i.e., a coated 2WCNT embedded in an effective medium having a dielectric constant \(\varepsilon _{\mathrm {eff}}\), is illuminated by a uniform, quasi-static electric field as discussed in the section of Basic theory. In this case, we have

$$\begin{aligned} \Phi (\rho ,\phi )=\cos \phi \left\{ \begin{array}{clcr} \mathcal {A}_{1}\rho , &{} \rho \le a_{1},\ \\ \mathcal {B}_{1}\rho +\mathcal {C}_{1}\rho ^{-1}, &{} a_{1}\le \rho \le a_{2},\ \\ \mathcal {D}_{1}\rho +\mathcal {E}_{1}\rho ^{-1}, &{} a_{2}\le \rho \le a_{3},\ \\ -E_{0}\rho +\mathcal {F}_{1}\rho ^{-1}, &{} \rho \ge a_{3},\ \end{array}\right. , \end{aligned}$$
(A-1)

The coefficients \(\mathcal {A}_{1}-\mathcal {F}_{1}\) in Eq. (A-1) can be determined from the matching boundary conditions of the potentials at the surfaces \(\rho =a_{1}\), \(\rho =a_{2}\), and \(\rho =a_{3}\). By matching the boundary conditions on the interface of the air shell and effective medium, i.e., \(\rho =a_{3}\), one obtains

$$\begin{aligned} \left( \begin{array}{c} E_{0} \\ \mathcal {F}_{1} \\ \end{array} \right) =\dfrac{a_{3}^{2}}{2\varepsilon _{\mathrm {eff}}} \left( \begin{array}{cccc} -\dfrac{\varepsilon _{\mathrm {eff}}+1}{a_{3}^{2}} &{} -\dfrac{\varepsilon _{\mathrm {eff}}-1}{a_{3}^{4}} \\ \varepsilon _{\mathrm {eff}}-1 &{} \dfrac{\varepsilon _{\mathrm {eff}}+1}{a_{3}^{2}} \\ \end{array} \right) \left( \begin{array}{c} \mathcal {D}_{1} \\ \mathcal {E}_{1} \\ \end{array} \right) \;. \end{aligned}$$
(A-2)

Using the condition \(\mathcal {F}_{1}=0\) for the present system [41], from Eq. (A-2) can be concluded

$$\begin{aligned} \frac{\varepsilon _{\mathrm {eff}}-1}{\varepsilon _{\mathrm {eff}}+1}=-\frac{1}{a_{3}^{2}}\dfrac{\mathcal {E}_{1}}{\mathcal {D}_{1}}\;. \end{aligned}$$
(A-3)

To determine the unknown coefficients \(\mathcal {D}_{1}\) and \(\mathcal {E}_{1}\), the boundary conditions, i.e., Eqs. (4)–(7), must be enforced at \(\rho =a_{1}\) and \(\rho =a_{2}\), that yield

$$\begin{aligned} \dfrac{\mathcal {E}_{1}}{\mathcal {D}_{1}}=a_{2}^{2}\dfrac{\left( 1-\dfrac{\alpha _{1}}{2}\dfrac{a_{1}^{2}}{a_{2}^{2}}\right) \dfrac{\omega _{\mathrm {p2}}^{2}}{\Omega _{2}}-\alpha _{1}\dfrac{a_{1}^{2}}{a_{2}^{2}} }{2-\left( 1-\dfrac{\alpha _{1}}{2}\dfrac{a_{1}^{2}}{a_{2}^{2}}\right) \dfrac{\omega _{\mathrm {p2}}^{2}}{\Omega _{2}}}\;.\end{aligned}$$
(A-4)

Finally, by substituting Eq. (A-4) into Eq. (A-3),  Eq. (29) can be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A. Optical properties of two-walled carbon nanotubes: quasi-static approximation. Eur. Phys. J. Plus 135, 611 (2020). https://doi.org/10.1140/epjp/s13360-020-00621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00621-3

Navigation