Skip to main content
Log in

Can Lévy noise induce coherence and stochastic resonances in a birhythmic van der Pol system?

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The analysis of a birhythmic modified van der Pol type oscillator driven by periodic excitation and Lévy noise shows the possible occurrence of coherence resonance and stochastic resonance. The frequency of the harmonic excitation in the neighborhood of one of the limit cycles influences the coherence of the dynamics on the time scale of the oscillations. The autocorrelation function, the power spectral density and the signal-to-noise-ratio used in this analysis are shown to be maximized for an appropriate choice of the noise intensity. In particular, a proper adjustment of the Lévy noise intensity enhances the output power spectrum of the system, that is, promotes stochastic resonance. Thus, the resonance, as examined using standard measures, seems to occur also in the presence of nonstandard noise. The initial selection of the attractor seems to have an influence on the coherence, while the skewness parameter of the Lévy noise has not a notable impact on the resonant effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Pikovsky, J. Kurths, Phys. Rev. Let. 78, 775 (1997)

    Article  ADS  Google Scholar 

  2. A. Kenfack, K. Singh, Phys. Rev. E 82, 046224 (2010)

    Article  ADS  Google Scholar 

  3. L. Alfonsi, L. Gammaitoni, S. Santucci, A. Bulsara, Phys. Rev. E 62, 299 (2000)

    Article  ADS  Google Scholar 

  4. R. Gu, Y. Xu, H. Zhang, Z. Sun, Acta Phys. Sin. 11, 110514 (2011)

    Google Scholar 

  5. Y. Zhao, J. Li, X. Zhao, Phys. Rev. E 70, 031113 (2004)

    Article  ADS  Google Scholar 

  6. A. Fiasconaro, B. Spagnolo, S. Boccaletti, Phys. Rev. E 72, 061110 (2005)

    Article  ADS  Google Scholar 

  7. C. Guarcello, D. Valenti, B. Spagnolo, Phys. Rev. B 92, 174519 (2015)

    Article  ADS  Google Scholar 

  8. A. Zakharova, T. Vadivasova, V. Anishchenko, J. Kurths, Phys. Rev. E 81, 011106 (2010)

    Article  ADS  Google Scholar 

  9. R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C. Tchawoua, Commun. Nonlinear Sci. Numer. Simul. 33, 70 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C. Tchawoua, Physica A 466, 552 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Yamapi, A. Chéagé Chamgoué, G. Filatrella, P. Woafo, Eur. Phys. J. B 90, 153 (2017)

    Article  ADS  Google Scholar 

  12. D. Biswas, T. Banerjee, J. Kurths, Phys. Rev. E 99, 062210 (2019)

    Article  ADS  Google Scholar 

  13. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)

    Article  ADS  Google Scholar 

  14. M.D. Mcdonnell, D. Abbott, Plos Comput. Biol. 5, e1000348 (2009)

    Article  ADS  Google Scholar 

  15. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  16. H. Qiao, J. Duan, Stoch. Dyn. 15, 1550004 (2015)

    Article  MathSciNet  Google Scholar 

  17. T. Srokowski, Phys. Rev. E 81, 051110 (2010)

    Article  ADS  Google Scholar 

  18. B. Dybiec, E. Gudowska-Nowak, J. Stat. Mech. 5, P05004 (2009)

    Article  Google Scholar 

  19. C. Guarcello, D. Valenti, G. Augello, B. Spagnolo, Acta Phys. Pol. B 44, 997 (2013)

    Article  ADS  Google Scholar 

  20. D. Valenti, C. Guarcello, B. Spagnolo, Phys. Rev. B 89, 214510 (2014)

    Article  ADS  Google Scholar 

  21. C. Guarcello, D. Valenti, A. Carollo, B. Spagnolo, J. Stat. Mech. Theory Exp. 2016, 054012 (2016)

    Article  Google Scholar 

  22. C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Nanotechnology 28, 134001 (2017)

    Article  ADS  Google Scholar 

  23. C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Phys. Rev. Appl. 11, 044078 (2019)

    Article  ADS  Google Scholar 

  24. A. Patel, B. Kosko, IEEE Trans. Neural Netw. 19, 1993 (2008)

    Article  Google Scholar 

  25. N. Hohn, A.N. Burkitt, Phys. Rev. E 63, 0319021 (2001)

    Article  Google Scholar 

  26. B.D. Hughes, inRamdom Walks and Random Environments (Oxford Science, Oxford, 1995), Vol. 1

  27. P.M. Drysdale, P.A. Robinson, Phys. Rev. E 58, 5382 (1998)

    Article  ADS  Google Scholar 

  28. V.S. Anishchenko, A.B. Neiman, F. Moss, L. Schimansky-Geier, Sov. Phys. Usp. 42, 7 (1992)

    Article  Google Scholar 

  29. R. Graham, T. Tél, Phys. Rev. A 31, 1109 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Yamapi, R. Mbakob Yonkeu, G. Filatrell, J. Kurths, Eur. Phys. J. B 92, 152 (2019)

    Article  ADS  Google Scholar 

  31. B. Dybiec, E. Gudowska-Nowak, Acta Phys. Polonica B 37, 1479 (2006)

    ADS  Google Scholar 

  32. S. Reinker,Stochastic resonance in thalamic neurons and resonant neuron models[D] (The University of British Columbia, New York, 2004)

  33. H. Frohlich, Int. J. Quantum Chem. 641, 649 (1968)

    Google Scholar 

  34. H. Frohlich, inQuantum mechanical concepts in biology, in theoretical physics and biology (Springer, Amsterdam, 1969) pp. 13–22

  35. R. Yamapi, G. Filatrella, M.A. Aziz-Alaoui, Chaos 20, 013114 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. P. Ghosh, S. Sen, S.S. Riaz, D.S. Ray, Phys. Rev. E 83, 036205 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  37. Q. Guo, Z. Sun, W. Xu, Commun. Nonlinear Sci. Numer. Simul. 72, 318 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi, P. Woafo, Chaos Solitons Fractals 32, 862 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  39. R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C. Tchawoua, Nonlinear Dyn. 84, 627 (2016)

    Article  Google Scholar 

  40. Y.J. Liang, W. Chen, Signal Processing 93, 242 (2013)

    Article  Google Scholar 

  41. D. Applebaum,Lévy Processes and Stochastic Calculus (Cambridge University Press, Cambridge, 2004)

  42. A.A. Dubkov, B. Spagnolo, Acta Phys. Polonica B 38, 1745 (2007)

    ADS  MathSciNet  Google Scholar 

  43. Y. Zheng, L. Serdukova, J. Duan, J. Kurths, Sci. Rep. 6, 29274 (2016)

    Article  ADS  Google Scholar 

  44. A. Janicki, Numerical and Statistical Approximation of Stochastic Differential Equations with Non Gaussian Measures, HSC Monograph, Wroc law, 1996

  45. R.L. Stratonovich, inTopics in the theory of random noise (Gordon and Breach, New York, 1967), Vol. 2

  46. L. Zhang, A. Song, J. He, J. Phys. A: Math. Theor. 44, 089501 (2011)

    Article  ADS  Google Scholar 

  47. R. Yamapi, R. Mbakob Yonkeu, G. Filatrella, C. Tchawoua, Commun. Nonlinear Sci. Numer. Simul. 33, 70 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Yamapi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonkeu, R.M., Yamapi, R., Filatrella, G. et al. Can Lévy noise induce coherence and stochastic resonances in a birhythmic van der Pol system?. Eur. Phys. J. B 93, 144 (2020). https://doi.org/10.1140/epjb/e2020-10146-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10146-x

Keywords

Navigation