Skip to main content
Log in

Global and local diagnostic analytics for a geostatistical model based on a new approach to quantile regression

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Data with spatial dependence are often modeled by geoestatistical tools. In spatial regression, the mean response is described using explanatory variables with georeferenced data. This modeling frequently considers Gaussianity assuming the response follows a symmetric distribution. However, when this assumption is not satisfied, it is useful to suppose distributions with the same asymmetric behavior of the data. This is the case of the Birnbaum–Saunders (BS) distribution, which has been considered in different areas and particularly in environmental sciences due to its theoretical arguments. We propose a geostatistical model based on a new approach to quantile regression considering the BS distribution. Global and local diagnostic analytics are derived for this model. The estimation of model parameters and its local influence are conducted by the maximum likelihood method. Global influence is based on the Cook distance and it is compared to local influence, in both cases to detect influential observations, whose detection and removal can modify the conclusions of a study. We illustrate the proposed methodology applying it to environmental data, which shows this situation changing the conclusions after removing potentially influential observations. A comparison with Gaussian spatial regression is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Athayde E, Azevedo A, Barros M, Leiva V (2019) Failure rate of Birnbaum–Saunders distributions: shape, change-point, estimation and robustness. Braz J Probab Stat 33:301–328

    Google Scholar 

  • Aykroyd RG, Leiva V, Marchant C (2018) Multivariate Birnbaum–Saunders distributions: modelling and applications. Risks 6(1), article 21

  • Balakrishnan N, Kundu D (2019) Birnbaum–Saunders distribution: a review of models, analysis, and application. Appl Stoch Models Bus Ind 35:4–49

    Google Scholar 

  • Bhatti C (2010) The Birnbaum–Saunders autoregressive conditional duration model. Math Comput Simul 80:2063–2078

    Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327

    Google Scholar 

  • Budsaba K, Patthanangkoor P, Volodin A (2020) A probabilistic model of growth for two-sided cracks based on the physical description of the phenomenon. Thail Stat 18:16–26

    Google Scholar 

  • Carrasco JMF, Leiva V, Riquelme M, Aykroyd RG (2020) An errors-in-variables model based on the Birnbaum–Saunders the distribution and its diagnostics with an application to earthquake data. Stoch Environ Res Risk Assess 34:369–380

    Google Scholar 

  • Cavieres MF, Leiva V, Marchant C, Rojas F (2020) A methodology for data-driven decision making in the monitoring of particulate matter environmental contamination in Santiago of Chile. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2020_41

    Article  Google Scholar 

  • Cook RD (1987) Influence assessment. J Appl Stat 14:117–131

    Google Scholar 

  • Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, London

    Google Scholar 

  • Cook RD, Peña D, Weisberg S (1988) The likelihood displacement: a unifying principle for influence measures. Commun Stat Theory Methods 17:623–640

    Google Scholar 

  • Dasilva A, Dias R, Leiva V, Marchant C, Saulo H (2020) Birnbaum-Saunders regression models: a comparative evaluation of three approaches. J Stat Comput Simul. https://doi.org/10.1080/00949655.2020.1782912

    Article  Google Scholar 

  • De Bastiani F, Cysneiros AHMA, Uribe-Opazo MA, Galea M (2015) Influence diagnostics in elliptical spatial linear models. TEST 24:322–340

    Google Scholar 

  • De Bastiani F, Uribe-Opazo MA, Galea M, Cysneiros AHMA (2018) Case-deletion diagnostics for spatial linear mixed models. Spat Stat 28:284–303

    Google Scholar 

  • Desousa MF, Saulo H, Leiva V, Scalco P (2018) On a tobit-Birnbaum–Saunders model with an application to antibody response to vaccine. J Appl Stat 45:932–955

    Google Scholar 

  • Diaz-Garcia JA, Galea M, Leiva V (2003) Influence diagnostics for elliptical multivariate linear regression models. Commun Stat Theory Methods 32:625–641

    Google Scholar 

  • Diggle P, Ribeiro P (2007) Model-based geoestatistics. Springer, New York

    Google Scholar 

  • Dunn P, Smyth G (1996) Randomized quantile residuals. J Comput Graph Stat 5:236–244

    Google Scholar 

  • Ferreira M, Gomes MI, Leiva V (2012) On an extreme value version of the Birnbaum–Saunders distribution. REVSTAT 10:181–210

    Google Scholar 

  • Garcia-Papani F, Uribe-Opazo MA, Leiva V, Aykroyd RG (2017) Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch Environ Res Risk Assess 31:105–124

    Google Scholar 

  • Garcia-Papani F, Leiva V, Ruggeri F, Uribe-Opazo MA (2018a) Kriging with external drift in a Birnbaum–Saunders geostatistical model. Stoch Environ Res Risk Assess 32:1517–1530

    Google Scholar 

  • Garcia-Papani F, Leiva V, Uribe-Opazo MA, Aykroyd RG (2018b) Birnbaum–Saunders spatial regression models: diagnostics an application to chemical data. Chemom Intell Lab Syst 177:114–128

    CAS  Google Scholar 

  • Genton MG, Zhang H (2012) Identifiability problems in some non-Gaussian spatial random fields. Chilean J Stat 3:171–179

    Google Scholar 

  • Gradshteyn I, Ryzhik I (2000) Tables of integrals, series and products. Academic Press, New York

    Google Scholar 

  • Huerta M, Leiva V, Rodriguez M, Liu S, Villegas D (2019) On a partial least squares regression model for asymmetric data with a chemical application in mining. Chemom Intell Lab Syst 1190:55–68

    Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Google Scholar 

  • Kostov P (2009) A spatial quantile regression hedonic model of agricultural land prices. Spat Econ Anal 4:53–72

    Google Scholar 

  • Krzanowski W (1998) An introduction to statistical modelling. Arnold, London

    Google Scholar 

  • Kundu D (2015) Bivariate sinh-normal distribution and a related model. Braz J Probab Stat 20:590–607

    Google Scholar 

  • Lange K (2001) Numerical analysis for statisticians. Springer, New York

    Google Scholar 

  • Leao J, Leiva V, Saulo H, Tomazella V (2018a) Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Stat Med 37:4421–4440

    Google Scholar 

  • Leao J, Leiva V, Saulo H, Tomazella V (2018b) A survival model with Birnbaum–Saunders frailty for uncensored and censored cancer data. Braz J Probab Stat 32:707–729

    Google Scholar 

  • Leiva V (2016) The Birnbaum–Saunders distribution. Academic Press, New York

    Google Scholar 

  • Leiva V (2019) An interview with Sam C. Saunders. Appl Stoch Models Bus Ind 35:133–137

    Google Scholar 

  • Leiva V, Saunders SC (2015) Cumulative damage models. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds) Wiley StatsRef: statistics reference online. https://doi.org/10.1002/9781118445112.stat02136.pub2

  • Leiva V, Santos-Neto M, Cysneiros FJA, Barros M (2014) Birnbaum–Saunders statistical modeling: a new approach. Stat Model 14:21–48

    Google Scholar 

  • Leiva V, Marchant C, Ruggeri F, Saulo H (2015) A criterion for environmental assessment using Birnbaum–Saunders attribute control charts. Environmetrics 36:463–476

    Google Scholar 

  • Leiva V, Ferreira M, Gomes MI, Lillo C (2016a) Extreme value Birnbaum–Saunders regression models applied to environmental data. Stoch Environ Res Risk Assess 30:1045–1058

    Google Scholar 

  • Leiva V, Santos-Neto M, Cysneiros FJA, Barros M (2016b) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum–Saunders distribution. Appl Stoch Models Bus Ind 32:74–89

    Google Scholar 

  • Leiva V, Aykroyd RG, Marchant C (2019) Discussion of “Birnbaum–Saunders distribution: a review of models, analysis, and applications” and a novel multivariate data analytics for an economics example in the textile industry. Appl Stoch Models Bus Ind 35:112–117

    Google Scholar 

  • Lemonte A, Martínez-Florez G, Moreno-Arenas G (2015) Multivariate Birnbaum–Saunders distribution: properties and associated inference. J Stat Comput Simul 85:374–392

    Google Scholar 

  • Lesaffre E, Verbeke G (1998) Local influence in linear mixed models. Biometrics 54:570–582

    CAS  Google Scholar 

  • Liu Y, Mao G, Leiva V, Liu S, Tapia A (2020) Diagnostic analytics for an autoregressive model under the skew-normal distribution. Mathematics 8(5):693

    Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA (2016a) A multivariate log-linear model for Birnbaum–Saunders distributions. IEEE Trans Reliab 65:816–827

    Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA, Vivanco JF (2016b) Diagnostics in multivariate generalized Birnbaum–Saunders regression models. J Appl Stat 43:2829–2849

    Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA (2018) Robust multivariate control charts based on Birnbaum–Saunders distributions. J Stat Comput Simul 88:182–202

    Google Scholar 

  • Marchant C, Leiva V, Christakos G, Cavieres MF (2019) Monitoring urban environmental pollution by bivariate control charts: new methodology and case study in Santiago, Chile. Environmetrics 30:e2551

    Google Scholar 

  • Martinez S, Giraldo R, Leiva V (2019) Birnbaum–Saunders functional regression models for spatial data. Stoch Environ Res Risk Assess 33:1765–1780

    Google Scholar 

  • McMillen D (2013) Quantile regression for spatial data. Springer, New York

    Google Scholar 

  • Nocedal J, Wright S (1999) Numerical optimization. Springer, New York

    Google Scholar 

  • Poon WY, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc B 61:51–61

    Google Scholar 

  • R-Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Sánchez L, Leiva V, Caro-Lopera FJ, Cysneiros FJA (2015) On matrix-variate Birnbaum–Saunders distributions and their estimation and application. Braz J Probab Stat 29:790–812

    Google Scholar 

  • Sánchez L, Leiva V, Galea M, Saulo H (2020a) Birnbaum–Saunders quantile regression and its diagnostics with application to economic data. Appl Stoch Models Bus Ind. https://doi.org/10.1002/asmb.2556

    Article  Google Scholar 

  • Sánchez L, Leiva V, Galea M, Saulo H (2020b) Birnbaum–Saunders quantile regression models with application to spatial data. Mathematics 8(5):1000

    Google Scholar 

  • Santana L, Vilca F, Leiva V (2011) Influence analysis in skew-Birnbaum–Saunders regression models and applications. J Appl Stat 38:1633–1649

    Google Scholar 

  • Saulo H, Leiva V, Ziegelmann FA, Marchant C (2013) A nonparameteric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stoch Environ Res Risk Asses 27:1479–1491

    Google Scholar 

  • Saulo H, Leao J, Leiva V, Aykroyd RG (2019) Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data. Stat Pap 60:1605–1629

    Google Scholar 

  • Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York

    Google Scholar 

  • Tapia A, Leiva V, Diaz MP, Giampaoli V (2019a) Influence diagnostics in mixed effects logistic regression models. TEST 28:920–942

    Google Scholar 

  • Tapia H, Giampaoli V, Diaz MP, Leiva V (2019b) Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data. J Appl Stat 46:1021–1042

    Google Scholar 

  • Trzpiot G (2013) Spatial quantile regression. Comp Econ Res 15:265–279

    Google Scholar 

  • Villegas C, Paula GA, Leiva V (2011) Birnbaum–Saunders mixed models for censored reliability data analysis. IEEE Trans Reliab 60:748–758

    Google Scholar 

  • Zhang H, Wang Y (2010) Kriging and cross-validation for massive spatial data. Environmetrics 21:290–304

    CAS  Google Scholar 

  • Zhu H, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and Reviewers for their constructive comments which led to improve the presentation of the manuscript. The research was partially supported by the project grants “FONDECYT 1200525” from the National Commission for Scientific and Technological Research of the Chilean government (V. Leiva) and “Puente 001/2019” from the Research Directorate of the Vice President for Research of the Pontificia Universidad Católica de Chile, Chile (M. Galea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Leiva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Perturbation matrices for the BS spatial model

Appendix: Perturbation matrices for the BS spatial model

For the model defined by (5) and its corresponding log-likelihood function given in (10), we have

$$\begin{aligned} \dfrac{\partial \ell ({\varvec{\theta }}; {\varvec{\omega }})}{\partial \omega _i} = -\tilde{{\varvec{A}}}_{{\varvec{\omega }}}^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i}+\dfrac{\partial }{\partial \omega _i} \left( \log (\tilde{a}_{{\varvec{\omega }}})\right) . \end{aligned}$$

The corresponding \((p+2) \times n\) perturbation matrix is given by \(\displaystyle {\varvec{\Delta }}= ({\partial \ell ^2 ({\varvec{\theta }}; {\varvec{\omega }})}/{\partial \theta _j \omega _i})\), where \(j={1,..., p+2}\) and \(i={1,..., n}\), with \(\theta _1=\beta _0, \ldots \theta _p=\beta _{p-1}\), \(\theta _{p+1}=\varphi \) and \(\theta _{p+2}=\alpha \). The elements of this matrix are given by

$$\begin{aligned} \dfrac{\partial \ell ^2({\varvec{\theta }}; {\varvec{\omega }})}{\partial \beta _j \, \partial \omega _i}= & {} - \left( \left( \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \beta _j} \right) ^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i}+\tilde{{\varvec{A}}}_{{\varvec{\omega }}}^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial ^2 \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i \partial \beta _j}\right) \nonumber \\&+\dfrac{\partial }{\partial \beta _j} \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right) , \nonumber \\ \dfrac{\partial \ell ^2({\varvec{\theta }}; {\varvec{\omega }})}{\partial \varphi \, \partial \omega _i}= & {} - \left( \left( \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \varphi } \right) ^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i}+ \tilde{{\varvec{A}}}_{{\varvec{\omega }}}^{\top } \dfrac{\partial \, {\varvec{\Gamma }}^{-1}}{\partial \varphi } \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i}\right. \nonumber \\&\left. +\tilde{{\varvec{A}}}_{{\varvec{\omega }}}^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial ^2 \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i \partial \varphi }\right) +\dfrac{\partial }{\partial \beta _j} \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right) , \nonumber \\ \dfrac{\partial \ell ^2({\varvec{\theta }}; {\varvec{\omega }})}{\partial \alpha \, \partial \omega _i}= & {} - \left( \left( \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \alpha } \right) ^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i}\right. \nonumber \\&\left. +\tilde{{\varvec{A}}}_{{\varvec{\omega }}}^{\top } {\varvec{\Gamma }}^{-1} \dfrac{\partial ^2 \tilde{{\varvec{A}}}_{{\varvec{\omega }}}}{\partial \omega _i \partial \alpha }\right) +\dfrac{\partial }{\partial \alpha } \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right) . \end{aligned}$$
(23)

Perturbation in the response: In the case of perturbation in the response and based on its corresponding log-likelihood function given in (20), we have

$$\begin{aligned} \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i}= & {} a(t_k({\varvec{\omega }}); \alpha , Q_k) A_{ki}, \\ \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \beta _j}= & {} -\dfrac{1}{\alpha \gamma _{\alpha } \sqrt{t_k({\varvec{\omega }}) Q_k}}\nonumber \\&\left( \dfrac{t_k({\varvec{\omega }}) \gamma _{\alpha }^2}{4Q_k}+1\right) \dfrac{1}{h^{\prime }(Q_k)} x_{kj}, \\ \dfrac{\partial ^2 \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i \partial \beta _j}= & {} \left( -\dfrac{\gamma _{\alpha }^2}{4Q_k}+\dfrac{1}{t_k({\varvec{\omega }})}\right) \nonumber \\&\dfrac{1}{2 \alpha \gamma _{\alpha } \sqrt{Q_k t_k({\varvec{\omega }})}} \dfrac{1}{h^{\prime }(Q_k)} x_{kj} A_{kj},\\ \dfrac{\partial }{\partial \beta _j} \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right)= & {} -4 \sum _{k=1}^n\,\left( \dfrac{t_k({\varvec{\omega }}) \gamma _{\alpha }}{t_k^2({\varvec{\omega }}) \gamma _{\alpha }^2 + 4Q_k t_k({\varvec{\omega }})}\right) ^2\nonumber \\&\dfrac{1}{h^{\prime }(Q_k)} x_{kj} A_{kj},\\ \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \varphi }= & {} a(t_k({\varvec{\omega }}); \alpha , Q_k) \dfrac{\partial t_k({\varvec{\omega }})}{\partial \varphi },\\ \dfrac{\partial t_k({\varvec{\omega }})}{\partial \varphi }= & {} \left( k\text {-th row of } \dfrac{\partial {{\varvec{A}}}}{\partial \varphi }\right) {\varvec{\omega }}, \\ \dfrac{\partial {{\varvec{A}}}}{\partial \varphi }= & {} {{\varvec{A}}}\left( \dfrac{1}{\alpha } {\varvec{\Gamma }}^{-1/2} \dfrac{\partial \, {\varvec{\Gamma }}^{1/2}}{\partial \varphi } {\varvec{\Gamma }}^{-1/2} + \dfrac{\alpha }{4} \dfrac{\partial \, {\varvec{\Gamma }}^{1/2}}{\partial \varphi } \right) {{\varvec{A}}}, \\ \dfrac{\partial ^2 \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i \partial \varphi }= & {} \dfrac{1}{\alpha \gamma _{\alpha } \sqrt{4Q_k}} \\&\left( -\dfrac{1}{2t_k^{3/2}({\varvec{\omega }})} \left( \dfrac{\gamma _{\alpha }^2}{2}+\dfrac{2Q_k}{t_k({\varvec{\omega }})}\right) -\dfrac{2Q_k}{t_k^{3/2}({\varvec{\omega }})}\right) \\&\times \dfrac{\partial t_k({\varvec{\omega }})}{\partial \varphi } A_{ki} + a(t_k({\varvec{\omega }}); \alpha , Q_k) \dfrac{\partial A_{ki}}{\partial \varphi },\\ \dfrac{\partial }{\partial \varphi } \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right)= & {} \sum _{k=1}^n \, \left( \dfrac{1}{2t_k^2({\varvec{\omega }})} \dfrac{\partial t_k({\varvec{\omega }})}{\partial \varphi }\right. \\&\left. + \dfrac{4Q_k}{(t_k^2({\varvec{\omega }}) \gamma _{\alpha }^2+4Q_k t_k({\varvec{\omega }}))^2} \right. \\&\left. \left( 2t_k({\varvec{\omega }}) \dfrac{\partial t_k({\varvec{\omega }})}{\partial \varphi } \gamma _{\alpha }^2 + 2t_k^2({\varvec{\omega }}) \gamma _{\alpha } \gamma _{\alpha }^{\prime }\right. \right. \\&\left. \left. + 4Q_k \dfrac{\partial t_k({\varvec{\omega }})}{\partial \varphi }\right) \right) A_{ki} \\&+ \sum _{k=1}^n\, \left( -\dfrac{1}{2t_k({\varvec{\omega }})}-\dfrac{4Q_k}{t_k^2({\varvec{\omega }}) \gamma _{\alpha }^2 + 4Q_k t_k({\varvec{\omega }})} \right) \\&\dfrac{\partial A_{ki}}{\partial \varphi }, \\ \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \alpha }= & {} \dfrac{1}{\sqrt{4Q_k}} \left( -\dfrac{\gamma _{\alpha }+\alpha \gamma _{\alpha }^{\prime }}{\alpha ^2 \gamma _{\alpha }^2}\right. \\&\left. \left( \sqrt{t_k({\varvec{\omega }})} \gamma _{\alpha }^2-4Q_k t_k^{-1/2}({\varvec{\omega }})\right) \right. \\&\left. + \dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{1}{2 \sqrt{t_k({\varvec{\omega }})}} \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha } \gamma _{\alpha }^2\right. \right. \\&\left. \left. + 2 \sqrt{t_k({\varvec{\omega }})} \gamma _{\alpha } \gamma _{\alpha }^{\prime } \right. \right. \\&\left. \left. + 2 Q_k t_k^{-3/2}({\varvec{\omega }}) \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha } \right) \right) ,\\ \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha }= & {} \left( k\text {-th row of } {{\varvec{A}}}\left( \dfrac{1}{\alpha ^2} {\varvec{\Gamma }}^{-1/2} + \dfrac{1}{4} {\varvec{\Gamma }}^{1/2} \right) {{\varvec{A}}}\right) {\varvec{\omega }}, \\ \dfrac{\partial ^2 \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i \partial \alpha }= & {} \dfrac{1}{\sqrt{4Q_k}} \left( \left( -\dfrac{\gamma _{\alpha } + \alpha \gamma _{\alpha }^{\prime }}{\alpha \gamma _{\alpha }} \dfrac{1}{\sqrt{t_k({\varvec{\omega }})}}\right. \right. \\&\left. \left. -\dfrac{1}{2\alpha \gamma _{\alpha } t_k^{3/2}({\varvec{\omega }})} \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha }\right) \right. \\&\left. \times \left( \dfrac{\gamma _{\alpha }^2}{2}+\dfrac{2Q_k}{t_k({\varvec{\omega }})}\right) +\dfrac{1}{\alpha \gamma _{\alpha }}\right. \\&\left. \left( \gamma _{\alpha } \gamma _{\alpha }^{\prime } - \dfrac{2Q_k}{t_k^2({\varvec{\omega }})} \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha }\right) \right) A_{ki}\\&+ a(t_k({{\varvec{\omega }}}); \alpha , Q_k) \left( ki\text {-th\ element\ of } \dfrac{\partial {{\varvec{A}}}}{\partial \alpha }\right) ,\\ \dfrac{\partial }{\partial \alpha } \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right)= & {} \sum _{k=1}^n\, \left( \dfrac{1}{2t_k^2({\varvec{\omega }})} \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha }\right. \\&\left. +\dfrac{4Q_k}{(t_k^2({\varvec{\omega }}) \gamma _{\alpha }^2+4Q_k t_k({\varvec{\omega }}))^2} \right. \\&\left. \times \left( 2 t_k({\varvec{\omega }}) \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha } \gamma _{\alpha }^2 + 2 \gamma _{\alpha } \gamma _{\alpha }^{\prime } t_k^2({\varvec{\omega }}) \right. \right. \\&\left. \left. + 4Q_k \dfrac{\partial t_k({\varvec{\omega }})}{\partial \alpha }\right) \right) A_{ki} \\&+ \sum _{k=1}^n\, \left( -\dfrac{1}{2t_k({\varvec{\omega }})}-\dfrac{4Q_k}{t_k^2({\varvec{\omega }}) \gamma _{\alpha }^2+4Q_k t_k({\varvec{\omega }})} \right) \\&\dfrac{\partial A_{ki}}{\partial \alpha }, \end{aligned}$$

where \( {\partial \, {\varvec{\Gamma }}^{-1}}/{\partial \varphi } = -{\varvec{\Gamma }}^{-1}({\partial \, {\varvec{\Gamma }}}/{\partial \varphi }) {\varvec{\Gamma }}^{-1}\), \({\partial {{\varvec{A}}}}/{\partial \alpha } = {{\varvec{A}}}( ({1}/{\alpha ^2}) {\varvec{\Gamma }}^{-1/2}+({1}/{4}) {\varvec{\Gamma }}^{1/2}) {{\varvec{A}}}\) and \(A_{ki}\) corresponds to the ki-th element of the matrix \({{\varvec{A}}}\). To calculate \({\partial \, {\varvec{\Gamma }}^{1/2}}/{\partial \varphi }\), see De Bastiani et al. (2015).

Perturbation in the explanatory variable: Based on the corresponding log-likelihood function given in (22), the elements defined in (23) have as components the expressions stated as

$$\begin{aligned} \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i}= & {} -\dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \\&\left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \beta _l A_{ki}, \\ \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \beta _j}= & {} -\dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \\&\left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} Z_{kj},\\ \dfrac{\partial ^2 \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i \partial \beta _j}= & {} \dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \\&\left( \left( \dfrac{3 \gamma _{\alpha }^2}{8 Q_k^2({\varvec{\omega }})}+\dfrac{1}{2Q_k({\varvec{\omega }})}\right) \right. \\&\left. + \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \dfrac{h^{\prime \prime } (Q_k({\varvec{\omega }}))}{(h^{\prime }(Q_k({\varvec{\omega }})))^2} \right) \\&\dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \beta _l A_{ki} Z_{kj},\\ \dfrac{\partial }{\partial \beta _j} \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i}\right)= & {} \sum _{k=1}^n\, \left( \left( \dfrac{1}{2 Q_k^2({\varvec{\omega }})}-\dfrac{16}{(t_k \gamma _{\alpha }^2 + 4Q_k({\varvec{\omega }}))^2} \right) \right. \\&\left.\times \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} + \left( \dfrac{1}{2Q_k({\varvec{\omega }})}-\dfrac{4}{t_k\gamma _{\alpha }^2+4Q_k({\varvec{\omega }})}\right) \right. \\&\left. \times \dfrac{h^{\prime \prime }(Q_k({\varvec{\omega }}))}{(h^{\prime }(Q_k({\varvec{\omega }})))^2} \right) \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \beta _l A_{ki} Z_{kj} \\&+ \sum _{k=1}^n\, \left( -\dfrac{1}{2 Q_k({\varvec{\omega }})}+\dfrac{4}{t_k \gamma _{\alpha }^2+4Q_k({\varvec{\omega }})}\right) \\&\dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} A_{ki} \rho _{jl},\\ \dfrac{\partial \tilde{A}_{k}({\varvec{\omega }})}{\partial \varphi }= & {} -\dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \\&\dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial {{\varvec{A}}}_k}{\partial \varphi } {\varvec{\omega }},\\ \dfrac{\partial ^2 \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i \partial \varphi }= & {} \beta _l \left( \dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2}\right. \\&\left. \left( \left( \dfrac{3 \gamma _{\alpha }^2}{8Q_k^2({\varvec{\omega }})}+\dfrac{1}{2Q_k({\varvec{\omega }})}\right) \right. \right. \\&\left. \left. \times \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} + \right. \right. \\&\left. \left. + \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1 \right) \dfrac{h^{\prime \prime }(Q_k({\varvec{\omega }}))}{(h^{\prime }(Q_k({\varvec{\omega }})))^2} \right) \right. \\&\left. \times \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \varphi } \dfrac{\partial {{\varvec{A}}}_k}{\partial \varphi } {\varvec{\omega }}A_{ki} \right. \\&\left. - \dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \right. \\&\left. \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial A_{ki}}{\partial \varphi } \right) ,\\ \dfrac{\partial }{\partial \varphi } \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i} \right)= & {} \beta _l \sum _{k=1}^n\, \left( \left( \left( \dfrac{1}{2 Q_k^2({\varvec{\omega }})}-\dfrac{16}{(t_k \gamma _{\alpha }^2+4Q_k({\varvec{\omega }}))^2} \right) \right. \right. \\&\left. \left. \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \right. \right. \\&\left. \left. +\left( \dfrac{1}{2Q_k({\varvec{\omega }})}-\dfrac{4}{t_k \gamma _{\alpha }^2+4Q_k({\varvec{\omega }})} \right) \right. \right. \\&\left. \left. \dfrac{h^{\prime \prime }(Q_k({\varvec{\omega }}))}{(h^{\prime }(Q_k({\varvec{\omega }})))^2} \right) \right. \\&\left. \times \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \varphi } A_{ki} \right. \\&+ \left. \left( -\dfrac{1}{2Q_k({\varvec{\omega }})}+\dfrac{4}{t_k \gamma _{\alpha }^2+4Q_k({\varvec{\omega }})}\right) \right. \\&\left. \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial A_{ki}}{\partial \varphi } \right) ,\\ \dfrac{\partial \tilde{A}_k({\varvec{\omega }})}{\partial \alpha }= & {} \dfrac{1}{\sqrt{4t_k}} \left( -\dfrac{\gamma _{\alpha }+\alpha \gamma _{\alpha }^{\prime }}{\alpha ^2 \gamma _{\alpha }^2} \left( \dfrac{t_k \gamma _{\alpha }^2 - 4Q_k({\varvec{\omega }})}{\sqrt{Q_k({\varvec{\omega }})}} \right) \right. \\&\left. +\dfrac{1}{\alpha \gamma _{\alpha } Q_k({\varvec{\omega }})} \left( \left( 2t_k \gamma _{\alpha } \gamma _{\alpha }^{\prime }-\frac{4\partial Q_k({\varvec{\omega }})}{\partial \alpha } \right) \sqrt{Q_k({\varvec{\omega }})}\right. \right. \\&\left. \left. -\frac{1}{2\sqrt{Q_k({\varvec{\omega }})}} \frac{\partial Q_k({\varvec{\omega }})}{\partial \alpha } (t_k \gamma _{\alpha }^2-4Q_k({\varvec{\omega }})) \right) \right) ,\\ \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \alpha }= & {} \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \beta _l \dfrac{\partial {{\varvec{A}}}_k}{\partial \alpha } {\varvec{\omega }},\\ \dfrac{\partial ^2 \tilde{A}_k({\varvec{\omega }})}{\partial \omega _i \partial \alpha }= & {} -\beta _l \left( -\dfrac{\gamma _{\alpha }+\alpha \gamma _{\alpha }^{\prime }}{\alpha ^2 \gamma _{\alpha }^2} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})} \right) ^{1/2}\right. \\&\left. \times \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} A_{ki} \right. \\&\left. + \dfrac{1}{\alpha \gamma _{\alpha }} \left( -\dfrac{1}{2} \left( \dfrac{Q_k({\varvec{\omega }})}{t_k}\right) ^{-3/2} \dfrac{1}{t_k} \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \alpha }\right) \right. \\&\left. \times \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} A_{ki} \right. \\&\left. + \dfrac{1}{\alpha \gamma _{\alpha }}\right. \\&\left. \times \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \left( \dfrac{8 \gamma _{\alpha } \gamma _{\alpha }^{\prime } Q_k({\varvec{\omega }}) - \frac{4\partial Q_k({\varvec{\omega }})}{\partial \alpha } \gamma _{\alpha }^2}{16 Q_k^2({\varvec{\omega }})}\right) \right. \\&\left. \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} A_{ki} \right. \\&\left. + \dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \right. \\&\left. \times \left( -\dfrac{1}{(h^{\prime }(Q_k({\varvec{\omega }})))^2}\right) h^{\prime \prime }(Q_k({\varvec{\omega }})) \right. \\&\left. \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \alpha } A_{ki} \right. \\&\left. + \dfrac{1}{\alpha \gamma _{\alpha }} \left( \dfrac{t_k}{Q_k({\varvec{\omega }})}\right) ^{1/2} \left( \dfrac{\gamma _{\alpha }^2}{4Q_k({\varvec{\omega }})}+1\right) \right. \\&\left. \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial A_{ki}}{\partial \alpha } \right) ,\\ \dfrac{\partial }{\partial \alpha } \left( \dfrac{\partial \log (\tilde{a}_{{\varvec{\omega }}})}{\partial \omega _i} \right)= & {} \beta _l \sum _{k=1}^n\, \left( \left( \dfrac{1}{2Q_k^2({\varvec{\omega }})} \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \alpha } \right. \right. \\&\left. \left. - \dfrac{8t_k \gamma _{\alpha } \gamma _{\alpha }^{\prime }+4\frac{\partial Q_k({\varvec{\omega }})}{\partial \alpha }}{(t_k \gamma _{\alpha }^2+4 Q_k({\varvec{\omega }}))^2} \right) \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} A_{ki} \right. \\&\left. +\left( -\dfrac{1}{2Q_k({\varvec{\omega }})} + \dfrac{4}{t_k \gamma _{\alpha }^2+4Q_k({\varvec{\omega }})}\right) \right. \\&\left. \times \left( -\dfrac{h^{\prime \prime }(Q_k({\varvec{\omega }}))}{(h^{\prime }(Q_k({\varvec{\omega }})))^2}\right) \dfrac{\partial Q_k({\varvec{\omega }})}{\partial \alpha } A_{ki} \right. \\&\left. + \left( -\dfrac{1}{2Q_k({\varvec{\omega }})}+\dfrac{4}{t_k \gamma _{\alpha }^2+4Q_k({\varvec{\omega }})}\right) \right. \\&\left. \dfrac{1}{h^{\prime }(Q_k({\varvec{\omega }}))} \dfrac{\partial A_{ki}}{\partial \alpha } \right) , \end{aligned}$$

where \(\rho _{jl}=1\), if \(j=l\); \(\rho _{jl}=0\), if \(j\ne l\); \(Z_{kj}=1\) for \(j=1\); \(Z_{kj}=X_{kl}({\varvec{\omega }})\), if \(j=l\); \(Z_{kj}=X_{kj}\), for \(j\ne 1,l\); and \({{\varvec{A}}}_k\) corresponds to the k-th row of \({{\varvec{A}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva, V., Sánchez, L., Galea, M. et al. Global and local diagnostic analytics for a geostatistical model based on a new approach to quantile regression. Stoch Environ Res Risk Assess 34, 1457–1471 (2020). https://doi.org/10.1007/s00477-020-01831-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01831-y

Keywords

Navigation