Skip to main content
Log in

Cerium–yttrium binary oxide microflower: synthesis, characterization and catalytic dehydration property

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cerium dioxide has a comparatively lower Ce4+/Ce3+ redox pair, which leaves abundant oxygen vacancies on oxide lattice, also making incorporation of foreign ion and subsequent applications feasible and convenient. In this work, a series of cerium–yttrium mixed oxides were prepared by using polyvinylpyrrolidone as major template through sol–gel, which were further employed as catalyst for dehydration of aniline with formic acid into N-phenylformamide. Characterizations reveal that synthetic samples have a variety of morphologies including nanoparticle, microflower, and uniform microrods. The monitoring of particle size, zeta potential, and ultraviolet-visible (UV–Vis) of preparative solution indicate that self-assembly of polyvinylpyrrolidone and its subsequent reaction with metal ion determines sample morphology. In catalytic dehydration, all samples show high dehydration efficiencies that are comparable to those from anhydrous Na2SO4 and combination of dicyclohexylcarbodiimide with 4-dimethylaminopyridine and dichloromethane shows better outputs than water. In association with structural analysis, cerium looks more active than yttrium, while yttrium mainly plays as a structure-directing and pore-forming agent. This study may contribute to micro-/nanofabrication of rare earth composites and their catalytic applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Zhang G, Xu J, Hou Z, Wang Q. Research on micro-structure and catalysis properties of nanosized Ce1−x(Fe0.5Eu0.5)xO2-δ solid solutions. J Rare Earths. 2017;35(1):63.

    CAS  Google Scholar 

  2. Shen K, Lin J-P, Xia Q, Dai L, Zhou G-J, Guo Y-L, Lu G-Z, Zhan W-C. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 2019;38(2):107.

    CAS  Google Scholar 

  3. Minaei S, Haghighi M, Jodeiri N, Ajamein H, Abdollahifar M. Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methane steam reforming. Adv Powder Technol. 2017;28(3):842.

    CAS  Google Scholar 

  4. Sun C, Li H, Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci. 2012;5(9):8475.

    CAS  Google Scholar 

  5. Han X, Li L, Wang C. Template-free synthesis of uniform single-crystal hollow cerium dioxide nanocubes and their catalytic activity. Nanoscale. 2013;5(16):7193.

    CAS  Google Scholar 

  6. Yuan S, Zhang Q, Xu B, Jin Z, Zhang Y, Yang Y, Zhang M, Ohno T. Porous cerium dioxide hollow spheres and their photocatalytic performance. RSC Adv. 2014;4(107):62255.

    CAS  Google Scholar 

  7. Slavinskaya EM, Kardash TY, Stonkus OA, Gulyaev RV, Lapin IN, Svetlichnyi VA, Boronin AI. Metal-support interaction in Pd/CeO2 model catalyst for CO oxidation: from pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal Sci Technol. 2016;6(17):6650.

    CAS  Google Scholar 

  8. Wilklow-Marnell M, Jones WD. Catalytic oxidation of carbon monoxide by α-alumina supported 3 nm cerium dioxide nanoparticles. Mol Catal. 2017;9:439.

    Google Scholar 

  9. Channei D, Nakaruk A, Phanichphant S. Influence of graphene oxide on photocatalytic enhancement of cerium dioxide. Mater Lett. 2017;209:43.

    CAS  Google Scholar 

  10. Satapathy S, Ahlawat A, Paliwal A, Singh R, Singh MK, Gupta PK. Effect of calcination temperature on nanoparticle morphology and its consequence on optical properties of Nd:Y2O3 transparent ceramics. CrystEngComm. 2014;16(13):2723.

    CAS  Google Scholar 

  11. Hayashi F, Iwamoto M. Yttrium-modified ceria as a highly durable catalyst for the selective conversion of ethanol to propene and ethene. ACS Catal. 2013;3(1):14.

    CAS  Google Scholar 

  12. Fokema MD, Ying JY. The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide. Appl Catal B: Environ. 1998;18(1–2):71.

    CAS  Google Scholar 

  13. Park J, Park M, Nam G, Kim MG, Cho J. Unveiling the catalytic origin of nanocrystalline yttrium ruthenate pyrochlore as a bifunctional electrocatalyst for Zn-air batteries. Nano Lett. 2017;17(6):3974.

    CAS  Google Scholar 

  14. Cheng W, Rechberger F, Niederberger M. Three-dimensional assembly of yttrium oxide nanosheets into luminescent aerogel monoliths with outstanding adsorption properties. ACS Nano. 2016;10(2):2467.

    CAS  Google Scholar 

  15. Englade-Franklin LE, Morrison G, Verberne-Sutton SD, Francis AL, Chan JY, Garno JC. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers. ACS Appl Mater Interfaces. 2014;6(18):15942.

    CAS  Google Scholar 

  16. Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhanitabar A. Synthesis, characterization, and swelling kinetic study of porous superabsorbent hydrogel nanocomposite based on sulfonated carboxymethylcellulose and silica nanoparticles. J Porous Mater. 2018;25(5):1325.

    CAS  Google Scholar 

  17. Taha AKT, Amir M, Korkmaz AD, Al-Messiere MA, Baykal A, Karakuş S, Kilislioglu A. Development of novel nano-ZnO enhanced polymeric membranes for water purification. J Inorg Organomet Polym. 2019;29(3):979.

    CAS  Google Scholar 

  18. Yan N, Zhang J, Tong Y, Yao S, Xiao C, Li Z, Kou Y. Solubility adjustable nanoparticles stabilized by a novel PVP based family: synthesis, characterization and catalytic properties. Chem Commun. 2009;29:4423.

    Google Scholar 

  19. Zaki T. Catalytic dehydration of ethanol using transition metal oxide catalysts. J Colloid Interf Sci. 2005;284(2):606.

    CAS  Google Scholar 

  20. Hu L, Xu S, Zhao Z, Yang Y, Peng Z, Yang M, Wang C, Zhao J. Ynamides as racemization-free coupling reagents for amide and peptide synthesis. J Am Chem Soc. 2016;138(40):13135.

    CAS  Google Scholar 

  21. Mai TT, Viswambharan B, Gori D, Kouklovsky C, Alezra V. Memory of chirality of tertiary aromatic amide: application to the asymmetric synthesis of (S)-α-methylDOPA. J Org Chem. 2012;77(19):8797.

    CAS  Google Scholar 

  22. Ojeda-Porras A, Gamba-Sánchez D. Recent developments in amide synthesis using nonactivated starting materials. J Org Chem. 2016;81(23):11548.

    CAS  Google Scholar 

  23. Dunetz JR, Magano J, Weisenburger GA. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org Process Res Dev. 2016;20(2):140.

    CAS  Google Scholar 

  24. Dine TME, Erb W, Berhault Y, Rouden J, Blanchet J. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis. J Org Chem. 2015;80(9):4532.

    Google Scholar 

  25. Potadar SM, Mali AS, Waghmode KT, Chaturbhuj GU. Repurposing n-butyl stannoic acid as highly efficient catalyst for direct amidation of carboxylic acids with amines. Tetrahedron Lett. 2018;59(52):4582.

    CAS  Google Scholar 

  26. Renuka MK, Gayathri V. Synthesis of secondary amides by direct amidation using polymer supported copper(II) complex. Polyhedron. 2018;148:195.

    CAS  Google Scholar 

  27. Kang B, Fu Z, Hong SH. Ruthenium-catalyzed redox-neutral and single-step amide synthesis from alcohol and nitrile with complete atom economy. J Am Chem Soc. 2013;135(32):11704.

    CAS  Google Scholar 

  28. Mia S, Dijkstra FA, Singh B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ Sci Technol. 2017;51(15):8359.

    CAS  Google Scholar 

  29. Chen D, He D, Lu J, Zhong L, Liu F, Liu J, Yu J, Wan G, He S, Luo Y. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization. Appl Catal B: Environ. 2017;218:249.

    CAS  Google Scholar 

  30. Pawlak DA, Woźniak K, Frukacz Z, Barr TL, Fiorentino D, Hardcastle S. ESCA studies of yttrium orthoaluminum perovskites. J Phys Chem B. 1999;103(17):3332.

    CAS  Google Scholar 

  31. Pawlak DA, Woźniak K, Frukacz Z, Barr TL, Fiorentino D, Seal S. ESCA studies of yttrium aluminum garnets. J Phys Chem B. 1999;103(9):1454.

    CAS  Google Scholar 

  32. Galindo IR, Viveros T, Chadwick D. Synthesis and characterization of titania-based ternary and binary mixed oxides prepared by the sol-gel method and their activity in 2-propanol dehydration. Ind Eng Chem Res. 2007;46(4):1138.

    CAS  Google Scholar 

  33. Lee AF, Naughton JN, Liu Z, Wilson K. High-pressure XPS of crotyl alcohol selective oxidation over metallic and oxidized Pd(111). ACS Catal. 2012;2(11):2235.

    CAS  Google Scholar 

  34. Zhang Y, Yuwono AH, Wang J, Li J. Enhanced photocatalysis by doping cerium into mesoporous titania thin films. J Phys Chem C. 2009;113(51):21406.

    CAS  Google Scholar 

  35. Imamura M, Matsubayashi N, Shimada H. Catalytically active oxygen species in La1-xSrxCoO3-δ studied by XPS and XAFS spectroscopy. J Phys Chem B. 2000;104(31):7348.

    CAS  Google Scholar 

  36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603.

    CAS  Google Scholar 

  37. Hiyoshi N. Nanocrystalline sodalite: preparation and application to epoxidation of 2-cyclohexen-1-one with hydrogen peroxide. Appl Catal A: Gen. 2012;419–420:164.

    Google Scholar 

  38. Zhan H, Yang X, Wang C, Chen J, Wen Y, Liang C, Greer HF, Wu M, Zhou W. Multiple nucleation and crystal growth of barium titanate. Cryst Growth Des. 2012;12(3):1247.

    CAS  Google Scholar 

  39. Vinothkannan M, Kim AR, Nahm KS, Yoo DJ. Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity. RSC Adv. 2016;6(110):108851.

    CAS  Google Scholar 

  40. Rodríguez-González C, Martínez-Hernández AL, Castaño VM, Kharissova OV, Ruoff RS, Velasco-Santos C. Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind Eng Chem Res. 2012;51(9):3619.

    Google Scholar 

  41. Ramaprasad AT, Latha D, Rao V. Synthesis and characterization of polypyyrrole grafted chitin. J Phys Chem Solids. 2017;104:169.

    CAS  Google Scholar 

  42. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Gómez-Serrano V. FT-IR analysis of pyrone and chromene structures in activated carbon. Energy Fuels. 2014;28(6):4096.

    CAS  Google Scholar 

  43. Zhang H, Wang YM, Zhang L, Gerritsen G, Abbenhuis HCL, van Santen RA, Li C. Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica supports. J Catal. 2008;256(1):226.

    CAS  Google Scholar 

  44. Huo W, Zhang X, Gan K, Chen Y, Xu J, Yang J. Effect of zeta potential on properties of foamed colloidal suspension. J Eur Ceram Soc. 2019;39(2–3):574.

    CAS  Google Scholar 

  45. Cheng H, Qin L, Cai P, Chen C, Wang J, Kim SI, Huang Y, Seo HJ. Charge transfer transition and energy transfer in Eu3+-doped Gd10V2O20. J Lumin. 2018;195:278.

    CAS  Google Scholar 

  46. Park J, Cullen DA, Chen J, Polizos G, Sharma J. Same solution synthesis and self-assembly of porous silica nanoparticles into microspheres. Appl Surf Sci. 2019;467–468:634.

    Google Scholar 

  47. Santos SI, Bogel-Łukasik E, Bogel-Łukasik R. The ionic liquid effect on solubility of aniline, a simple aromatic amine: perspective of solvents’ mixture. Fluid Phase Equilibr. 2012;325:105.

    CAS  Google Scholar 

  48. Chen C, Tan L, Zhou P. Approach for the synthesis of N-phenylamides from β-ketobutylanilides using dimethylformamide and dimethylacetamide as the acyl donors. J Saudi Chem Soc. 2015;19(3):327.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Shaanxi Province (No. 2017JM2016), and the Fundamental Research Funds for the Central Universities (No. xjj2014005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Huang, BH., Fan, C. et al. Cerium–yttrium binary oxide microflower: synthesis, characterization and catalytic dehydration property. Rare Met. 40, 1785–1800 (2021). https://doi.org/10.1007/s12598-020-01475-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01475-5

Keywords

Navigation