Skip to main content
Log in

Constructions of quasi-twisted quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, our main objective is to construct quantum codes from quasi-twisted (QT) codes. At first, a necessary and sufficient condition for Hermitian self-orthogonality of QT codes is introduced by virtue of the Chinese remainder theorem. Then, we utilize these self-orthogonal QT codes to provide quantum codes via the famous Hermitian construction. Moreover, we present a new construction method of q-ary quantum codes, which can be viewed as an effective generalization of the Hermitian construction. General QT codes that are not self-orthogonal are also employed to construct quantum codes. As the computational results, some binary, ternary and quaternary quantum codes are constructed and their parameters are determined, which all cannot be deduced by the quantum Gilbert–Varshamov bound. In the binary case, a small number of quantum codes are derived with strictly improved parameters compared with the current records. In the ternary and quaternary cases, our codes fill some gaps or have better performances than the current results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  4. Cannon, J., Steel, A., White, G.: Linear codes over finite fields, Handbook of Magma Function (Cannon, J. and Bosma, W. eds.), Computational Algebra Group, Department of Mathematics, University of Sydney, V2.13, pp. 3591-4023. http://magma.maths.usyd.edu.au/magma (2006)

  5. Castelvecchi, D.: Quantum computers ready to leap out of the lab in 2017. Nature 541(7635), 9–10 (2017)

    Article  ADS  Google Scholar 

  6. Chen, X., Sun, Y., Xu, G., Jia, H., Qu, Z., Yang, Y.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)

    Article  ADS  Google Scholar 

  7. Chepyzhov, V.: A Gilber–Vashamov bound for quasi-twisted codes of rate \(\frac{1}{n}\). In: Proceedings of the Joint Swedish-Russian International Workshop on Information Theory. Mölle. Sweden, pp. 214–218 (1993)

  8. Degwekar, A., Guenda, K., Gulliver, T.A.: Extending Construction X for quantum error-correcting codes. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds.) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol. 3, pp. 141–152. Springer, Cham (2013)

    Chapter  Google Scholar 

  9. Edel, Y.: Table of Quantum Twisted Codes. www.mathi.uni-heidelberg.de/~yves/matritzen/QTBCH/QTBCHIndex.html. Accessed 11 Dec 2019

  10. Ezerman, M.F., Ling, S., Özkaya, B., Solé, P.: Good stabilizer codes from quasi-cyclic codes over \(\mathbb{F}_4\) and \(\mathbb{F}_9\). arXiv:1906.04964v1 (2019)

  11. Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)

    Article  MathSciNet  Google Scholar 

  12. Galindo, C., Hernando, F., Mastsumoto, R.: Quasi-cyclic constructions of quantum codes. Finite Fields Appl. 52, 261–280 (2018)

    Article  MathSciNet  Google Scholar 

  13. Gao, J., Fu, F.: Note on qausi-twisted codes and an application. Finite Fields Appl. 47, 487–506 (2015)

    MATH  Google Scholar 

  14. Grassl, M.: Codetables. http://www.codetables.de/. Accessed 11 Dec 2019

  15. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2017)

    Article  MathSciNet  Google Scholar 

  16. Güneri, C., Özbudak, F.: The concatenated structure of quasi-cyclic codes and an improvement of Jensen’s bound. IEEE Trans. Inf. Theory 59(2), 979–985 (2013)

    Article  MathSciNet  Google Scholar 

  17. Güzeltepe, M., Eroz, M.: Quantum codes from codes over the ring \(\mathbb{F}_{2^ m}+\alpha \mathbb{F}_{2^ m}+\beta \mathbb{F}_{2^ m}+\gamma \mathbb{F} _ 2^ m \). J. Univ. Math. 2(2), 127–136 (2019)

    Article  Google Scholar 

  18. Güzeltepe, M., Sarı, M.: Quantum codes from codes over the ring \({{\mathbb{F}}}_{q}+\alpha {\mathbb{F}}_{q} \). Quantum Inf. Process. 18(12), 365 (2019)

    Article  ADS  Google Scholar 

  19. Hagiwara, M., Kasai, K., Imai, H., Sakaniwa, K.: Spatially-coupled quasi-cyclic quantum LDPC codes. In: Proceedings of 2011 IEEE ISIT. Nice. France, pp. 638–642 (2007)

  20. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  21. Jia, Y.: On quasi-twisted codes over finite fields. Finite Fields Appl. 18, 237–257 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kasami, T.: A Gilber–Vashamov bound for quasi-cyclic codes of rate \(\frac{1}{2}\). IEEE Trans. Inf. Theory 20, 679 (2008)

    Article  Google Scholar 

  23. Ketkar, A., Klappenecker, A., Kumar, S.: Nonbinary stabilizier codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  Google Scholar 

  24. Knill, E.: Resilient quantum computation. Science 279(5349), 342–345 (1998)

    Article  ADS  Google Scholar 

  25. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001)

    Article  MathSciNet  Google Scholar 

  26. Ling, S., Luo, J., Xing, C.: Generalization of Steane’s enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory 56(8), 4080–4084 (2010)

    Article  MathSciNet  Google Scholar 

  27. Lisonek, P., Singh, V.: Quantum codes from nearly self-orthogonal quaternary linear codes. Des. Codes Cryptogr. 73, 417–424 (2014)

    Article  MathSciNet  Google Scholar 

  28. Liu, H., Liu, X.: New EAQEC code from cyclic codes over \(\mathbb{F}_{q}+u\mathbb{F}_{q}\). Quantum Inf. Process. 19(3), 85 (2020)

    Article  ADS  Google Scholar 

  29. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18(6), 183 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lv, J., Li, R., Fu, Q.: Quantum codes derived from qausi-twisted codes of index 2 with Hermitian inner product. IEICE Trans. Fundam. 102(10), 1411–1415 (2019)

    Article  Google Scholar 

  31. Lv, J., Li, R., Wang, J.: New binary quantum codes derived from one-generator quasi-cyclic codes. IEEE Access 7, 85782–85785 (2019)

    Article  Google Scholar 

  32. Ma, Z., Lu, X., Feng, K., Feng, D.: On non-binary quantum BCH codes. LNCS 3959, 675–683 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Özen, M., Güzeltepe, M.: Quantum codes from codes over lipschitz integers. GJPAM 7(2), 201–206 (2011)

    MATH  Google Scholar 

  34. Özen, M., Güzeltepe, M.: Quantum codes from codes over Gaussian integers with respect to the Mannheim metric. Quantum Inf. Comput. 12(9–10), 813–819 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Sangwisuta, E., Jitmanb, S., Udomkavanich, P.: Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Adv. Math. Commun. 11, 595–613 (2017)

    Article  MathSciNet  Google Scholar 

  36. Tang, Y., Yao, T., Sun, Z., Zhu, X., Kai, X.: Nonbinary quantum codes from constacyclic codes over polynomial residue rings. Quantum Inf. Process. 19, 84 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wan, Z.: Geometry of Classical Groups Over Finite Fields. Science Press, Beijing (2002)

    Google Scholar 

  38. Zhu, S., Sun, Z., Li, P.: A class of negacyclic BCH codes and its application to quantum codes. Des. Codes Cryptogr. 86(10), 2139–2165 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 11471011, 11801564, 11901579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Li, R. & Wang, J. Constructions of quasi-twisted quantum codes. Quantum Inf Process 19, 274 (2020). https://doi.org/10.1007/s11128-020-02742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02742-1

Keywords

Navigation