Skip to main content
Log in

Numerical Simulation of MHD Stagnation Point Flow of Micropolar Heat Generating and Dissipative Nanofluid : SLM Approach

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In the present paper, we study the magnetohydrodynamic stagnation point flow dealing with heat and mass transfer of a micropolar nanofluid influenced with heat generation and viscous dissipation. Nonlinear ordinary differential equations are obtained by applying suitable similarity transformation on the governing partial differential equations. These differential equations have been solved by successive linearization method (SLM). The effects of various dimensionless parameters, such as heat generation parameter, thermophoretic parameter and stagnation parameter on the flow field, are discussed through tables and graphs by accumulating sufficient data using SLM. Results show many important facts, including temperature distribution gradual increment with the increase of heat generation and microrotation parameters. Quadratic multiple regression analysis has been performed for skin friction coefficient, local Sherwood number and local Nusselt number. When free stream velocity and stretching velocity are equal, variation in microrotation and magnetic field leads to very low perturbation in skin friction, local Sherwood number and local Nusselt number, whereas when free stream velocity is dominant over stretching velocity, there occurs reverse heat flow at the surface of the sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ab :

Arbitrary constants

\({B_0}\) :

Magnetic field

C :

Fluid concentration

\({Cf_x}\) :

Skin friction coefficient

\({C_\mathrm{{w}}}\) :

Species concentration at the surface

\({C_\infty }\) :

Ambient species concentration

\({c_p}\) :

Specific heat at a constant pressure

\({D_{\mathrm{{B}}}}\) :

Coefficient of Brownian diffusion

\({D_\mathrm{{T}}}\) :

Coefficient of thermophoretic diffusion

\(\mathrm{{Ec}}\) :

Eckert number

f :

Stream function

\(j_\mathrm{{f}}\) :

Microinertia density

K :

Material parameter

k :

Vortex viscosity

\({k_\mathrm{{f}}}\) :

Thermal conductivity

Le:

Schmidt number

M :

Magnetic parameter

N :

Microrotation or angular velocity

Nb :

Brownian motion parameter

Nt :

Thermophoretic parameter

Nux :

Local Nusselt number

Pr:

Prandtl number

Q :

Heat generation coefficient

\({q_\mathrm{{w}}}\) :

Heat transfer rate

Rex :

Local Reynolds number

Shx :

Local Sherwood number

s :

Stagnation parameter

T :

Fluid temperature

\({T_\mathrm{{w}}}\) :

Fluid temperature at stretching sheet

\({T_\infty }\) :

Ambient fluid temperature

u :

Fluid velocity component in the x direction

\({u_\mathrm{{w}}}\) :

Stretching velocity

\({u_\infty }\) :

Free stream fluid velocity

v :

Fluid velocity component in the y direction

xy :

Coordinate directions

\(\alpha \) :

Heat generation parameter

\({\gamma _\mathrm{{f}}}\) :

Spin gradient viscosity

\(\theta (\eta )\) :

Dimensionless temperature

\({\mu _\mathrm{{f}}}\) :

Dynamic viscosity

\({\upsilon _\mathrm{{f}}}\) :

Kinematic viscosity

\({(\rho {c_p})_\mathrm{{f}}}\) :

Heat capacity of base fluid

\({(\rho {c_p})_\mathrm{{p}}}\) :

Nanoparticle heat capacity

\({\rho _\mathrm{{f}}}\) :

Fluid density

\(\sigma \) :

Electric conductivity

\({\tau _\mathrm{{w}}}\) :

Surface shear stress

\(\phi (\eta )\) :

Dimensionless concentration

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231:99–106

    Google Scholar 

  2. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  ADS  Google Scholar 

  3. Abu-Nada E (2008) Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow 29:242–249

    Article  Google Scholar 

  4. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  Google Scholar 

  5. Abu-Nada E, Oztop HF (2009) Effects of inclination angle on natural convection in enclosures filled with cu-water nanofluid. Int J Heat Fluid Flow 30:669–678

    Article  Google Scholar 

  6. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  7. Ariman T, Turk M, Sylvester N (1974) Applications of microcontinuum fluid mechanics. Int J Eng Sci 12:273–293

    Article  Google Scholar 

  8. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  9. Ramzan M, Farooq M, Hayat T, Chung JD (2016) Radiative and joule heating effects in the mhd flow of a micropolar fluid with partial slip and convective boundary condition. J Mol Liq 221:394–400

    Article  Google Scholar 

  10. Pal D, Mandal G (2017) Thermal radiation and mhd effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int J Mech Sci 126:308–318

    Article  Google Scholar 

  11. Hayat T, Khan MI, Waqas M, Alsaedi A (2017a) Radiative flow of micropolar nanofluid accounting thermophoresis and brownian moment. Int J Hydrog Energy 42:16821–16833

    Article  Google Scholar 

  12. Hsiao KL (2017) Micropolar nanofluid flow with mhd and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf 112:983–990

    Article  Google Scholar 

  13. Nadeem S, Hussain M, Naz M (2010) Mhd stagnation flow of a micropolar fluid through a porous medium. Meccanica 45:869–880

    Article  MathSciNet  Google Scholar 

  14. Das K (2012) Slip effects on mhd mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet. Comput Math Appl 63:255–267

    Article  MathSciNet  Google Scholar 

  15. Ibrahim W, Shankar B, Nandeppanavar MM (2013) MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf 56:1–9

    Article  Google Scholar 

  16. Mahmood A, Chen B, Ghaffari A (2016) Hydromagnetic hiemenz flow of micropolar fluid over a nonlinearly stretching/shrinking sheet: Dual solutions by using chebyshev spectral newton iterative scheme. J Magn Magn Mater 416:329–334

    Article  ADS  Google Scholar 

  17. Salem AM, El-Aziz MA (2008) Effect of hall currents and chemical reaction on hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption. Appl Math Model 32:1236–1254

    Article  MathSciNet  Google Scholar 

  18. Gorla M, Chand K, Singh A (2015) Effects of rotation and heat source on mhd free convective flow on vertically upwards heated plate with gravity modulation in slip flow region. Proc Natl Acad Sci, India, Sect A Phys Sci 85:427–437

    Article  MathSciNet  Google Scholar 

  19. Lukaszewicz G (1999) Micropolar fluids: theory and applications. Springer, Berlin

    Book  Google Scholar 

  20. Beg A, Bhargava R, Rashidi MM (2011) Numerical simulation in micropolar fluid dynamics: mathematical modelling of nonlinear flows of micropolar fluids. Lambert Academic Publishing

  21. Batchelor GK (1988) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  22. Yuan SW (1967) Foundations of fluid mechanics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  23. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  ADS  Google Scholar 

  24. Layek GC, Mukhopadhyay S, Samad MA (2007) Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing. Int Commun Heat Mass Transf 34:347–356

    Article  Google Scholar 

  25. Makukula Z, Sibanda P, Motsa S (2010) A note on the solution of the von kármán equations using series and chebyshev spectral methods. Bound Value Probl 2010:471793

    Article  Google Scholar 

  26. Motsa SS, Sibanda P (2012) A linearisation method for non-linear singular boundary value problems. Comput Math Appl 63:1197–1203

    Article  MathSciNet  Google Scholar 

  27. Eldabe NT, Ouaf ME (2006) Chebyshev finite difference method for heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching surface with ohmic heating and viscous dissipation. Appl Math Comput 177:561–571

    MathSciNet  MATH  Google Scholar 

  28. Kumbhakar B, Rao PS (2015) Dissipative boundary layer flow over a nonlinearly stretching sheet in the presence of magnetic field and thermal radiation. Proc Natl Acad Sci, India, Sect A Phys Sci 85:117–125

    Article  MathSciNet  Google Scholar 

  29. Sarkar S, Seth GS (2016) Unsteady hydromagnetic natural convection flow past a vertical plate with time-dependent free stream through a porous medium in the presence of hall current, rotation, and heat absorption. J Aerosp Eng 30:04016081

    Article  Google Scholar 

  30. Seth GS, Jana RN, Maiti MK (1981) Unsteady hydromagnetic flow past a porous plate in a rotating medium with time-dependent free stream. Rev Roumaine Sci Tech Ser Mec Appl 26:383–400

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Seth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement

Investigation of MHD stagnation point flow of micropolar heat generating and dissipating nanofluid is significant due to its application in the manufacturing of plastic substance, polymer extrusion, lubricant, etc. Effect of the magnetic field, microrotation, heat generation, Brownian and thermophoretic diffusions along with viscous dissipation and Joule heating on the fluid flow is analysed. Governing equations are solved by successive linearization method (SLM). The numerical results are validated in the limiting sense with published research article. Magnetic field, thermophoretic and Brownian diffusions, viscous dissipation, heat generation and microrotation have a significant effect on the rate of heat and mass transfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, G.S., Kumar, B., Nandkeolyar, R. et al. Numerical Simulation of MHD Stagnation Point Flow of Micropolar Heat Generating and Dissipative Nanofluid : SLM Approach. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 91, 503–515 (2021). https://doi.org/10.1007/s40010-020-00704-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-020-00704-x

Keywords

Navigation