Skip to main content
Log in

Electrochemical detection of sotalol on a magnetographite-epoxy electrode using magnetite nanoparticles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Sotalol hydrochloride (STHCl) is a cardiovascular agent, specifically an antiarrhythmic and beta-blocker, that can be used regularly for an extended period. However, it may have side effects, such as weakness and slow heart rate (bradycardia). Currently, techniques such as capillary zone electrophoresis and high-performance liquid chromatography have been widely used for the determination of sotalol hydrochloride, which increases the cost of the analysis. Hence, the aim of this study is to develop an electrochemical sensor, employing magnetographite-epoxy composite (m-GEC) electrode modified with magnetite nanoparticles (MNPs) functionalised with carboxyl for the detection of sotalol as a faster, cheaper, precise and sensitive alternative method. The MNPs have an average size of 7.5 nm and were characterised by transmission electron microscopy. The electrochemical behaviour of STHCl on the m-GEC electrode modified with MNPs, was investigated by cyclic voltammetry and differential pulse voltammetry (DPV). The supporting electrolyte was \(0.1\, \hbox {mol l}^{\mathrm {-1}}\) of phosphate buffer solution (\(\hbox {pH}= 7.0\)). Two oxidation peaks were observed: at a potential of 720 mV and at 920 mV vs. Ag/AgCl (KCl sat). Differential pulse voltammetry revealed linear calibration curves from 0.5 to \(500\times 10^{-6}\,\hbox {mol l}^{-1}\), with a limit of detection of \(0.015\times 10^{-6}\hbox {mol}\cdot \hbox {l}^{{-1}}\). Finally, the modified electrode showed good sensitivity, selectivity and stability for the determination of sotalol in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Lei, L Wu, D A Terrar and C L-H Huang, Circulation  138, 1879 (2018)

    Article  Google Scholar 

  2. M Biswas, A Levy, R Weber, K Tarakji, M Chung, P A Noseworthy, C Newton-Cheh and M A Rosenberg, J. Cardiovasc. Pharmacol. Ther.  25, 212 (2020)

    Article  Google Scholar 

  3. M Maurer, B I Escher, P Richle, C Schaffner and A C Alder, Water Res.  41, 1614 (2007)

    Article  Google Scholar 

  4. A Küsterand and N Adler, Philos. Trans. R. Soc. B Biol. Sci.  369, 1656 (2014)

  5. F A Ibrahim, A M El-Brashy, M I El-Awady and N A Abdallah, Open Chemistry 17(1), 64 (2019)

    Article  Google Scholar 

  6. A A Elbashir, F E O Suliman and H Y Aboul-Enein, Appl. Spectrosc. Rev.  46, 222 (2011)

    Article  ADS  Google Scholar 

  7. H-M Zhang, J-Y Yang, L-M Du, C-F Li and H Wu, Anal. Methods  3, 1156 (2011)

    Article  Google Scholar 

  8. S L MacLeod, P Sudhir and C S Wong, J. Chromatogr. A  1170, 23 (2007)

    Article  Google Scholar 

  9. L Matysova, O Zahalkova, S Klovrzova, Z Sklubalova, P Solich and L Zahalka, J. Anal. Methods Chem. (2015)

  10. K Goryński, A Kiedrowicz and B Bojko, J. Pharm. Biomed. Anal.  127, 147 (2016)

    Article  Google Scholar 

  11. M Khairy, A A Khorshed, F A Rashwan, G A Salah, H M Abdel-Wadood and C E Banks, Sens. Actuators B Chem.  252, 1045 (2017)

    Article  Google Scholar 

  12. Q Xu, A Yuan, R Zhang, X Bian, D Chen and X Hu, Curr. Pharm. Anal.  5, 144 (2009)

    Article  Google Scholar 

  13. H Heli, A Jabbari, M Zarghan, A A Moosavi-Movahedi, Curr. Pharm. Anal. 9 , 291 (2013)

    Article  Google Scholar 

  14. A A Ensafi, A R Allafchian, B Rezaei and R Mohammadzadeh, Mater. Sci. Eng. C  33, 202 (2013)

    Article  Google Scholar 

  15. F G Souza Jr, M E Sena and B G Soares, J. Appl. Polym. Sci.  93, 1631 (2004)

    Article  Google Scholar 

  16. E S Lopes, E Domingos, R S Neves, W Romão, K R de Souza, R Valaski, B S Archanjo, F G Souza, A M Silva, A Kuznetsov and J R Araujo, Eur. Polym. J.  85, 588 (2016)

    Article  Google Scholar 

  17. D França, A C Rebessi, F F Camilo, F G Souza Jr and R Faez, Front. Mater. 6, 189 (2019)

    Article  ADS  Google Scholar 

  18. F G Souza Jr, L O Paiva, R C Michel and G E de Oliveira, Polímeros  21, 39 (2011)

    Article  Google Scholar 

  19. F G Souza Jr, A C Ferreira, A Varela, G E Oliveira, F Machado, E D Pereira, E Fernandes, J C Pinto and M Nele, Polym. Test.  32, 1466 (2013)

    Article  Google Scholar 

  20. F G Souza Jr, J Marins, J Pinto, G de Oliveira, C Rodrigues and L Lima, J. Mater. Sci.  45, 5012 (2010)

    Article  ADS  Google Scholar 

  21. F G Souza Jr, T K Anzai, P A Melo Jr, B G Soares, M Nele and J C Pinto, J. Appl. Polym. Sci.  107, 2404 (2008)

    Article  Google Scholar 

  22. T M de Almeida, F da Silveira Maranhão, F V de Carvalho, A Middea, J R de Araujo and F G Souza Jr, Macromol. Symp.  381, 1800111 (2018)

    Article  Google Scholar 

  23. F G Souza Jr, M T D Orlando, R C Michel, J C Pinto, T Cosme and G E Oliveira, J. Appl. Polym. Sci.  119, 2666 (2011)

    Article  Google Scholar 

  24. F G Souza Jr, G E Oliveira, T Anzai, P Richa, T Cosme, M Nele, C H M Rodrigues, B G Soares and J C Pinto, Macromol. Mater. Eng.  294, 739 (2009)

    Article  Google Scholar 

  25. F G Souza Jr, R C Michel and B G Soares, Polym. Test.  24, 998 (2005)

    Article  Google Scholar 

  26. K R Jawaher, R Indirajith, S Krishnan, R Robert and S J Das, Pramana – J. Phys.  90: 38 (2018)

    Google Scholar 

  27. M Malligavathy, S Iyyapushpam, S T Nishanthi and D P Padiyan, Pramana – J. Phys.  90: 44 (2018)

    Google Scholar 

  28. M De and H S Tewari, Pramana – J. Phys.  89: 3 (2017)

    Google Scholar 

  29. B Singh and B Das, Pramana – J. Phys.  93: 32 (2019)

    Google Scholar 

  30. Y Mohammadmoradi and M Yaghobi, Pramana – J. Phys.  93: 25 (2019)

    Google Scholar 

  31. F F Hudari, B F da Silva, M I Pividori and M V B Zanoni, J. Solid State Electrochem.  9, 2491 (2016)

    Article  Google Scholar 

  32. F C Vicentini, P A Raymundo-Pereira, B C Janegitz, S A S Machado and O Fatibello-Filho, Sens. Actuators B Chem.  227, 610 (2016)

    Article  Google Scholar 

  33. J Raghavendra Rao, Electrochemical methodologies in biomedical applications, in: Bioelectrochemistry I edited by G Milazzo (Plenum Press, New York, 1983) (Research Laboratories of SIEMENS A.G. D-8S20 Erlangen, Fed. Rep. Germany)

  34. Pandurangan Prabhu, Rajendran Suresh Babu and Sangilimuthu Sriman Narayanan, J. Mater. Sci. Mater. Electron.  30, 9955 (2019)

    Article  Google Scholar 

  35. Wei-Fang Hsu and Tzong-Ming Wu, J Mater. Sci. Mater. Electron.  30, 8449 (2019)

    Article  Google Scholar 

  36. C R Raj, T Okajima and T Ohsaka, J. Electroanal. Chem.  543, 127 (2003)

    Article  Google Scholar 

  37. L-P Lu, S-Q Wang and X-Q Lin, Anal. Chim. Acta  519, 161 (2004)

    Article  Google Scholar 

  38. D Radev, G Peeva and V Nenov, J. Water Resour. Prot.  07, 1399 (2015)

    Article  Google Scholar 

  39. F F Hudari, L C de Almeida, B F da Silva and M V B Zanoni, Microchem. J.  116, 261 (2014)

    Article  Google Scholar 

  40. I M Pividori, Anal. Lett. 36, xvii (2003)

  41. C Coutanceau, S Brimaud, C Lamy, J-M Leger, L Dubau, S Rousseau and F Vigier, Electrochim. Acta  53, 6865 (2008)

    Article  Google Scholar 

  42. P Norouzi, M R Ganjali, A S Emami Meibodi and B Larijani, Russ. J. Electrochem.  44, 1024 (2008)

    Article  Google Scholar 

  43. A J Bard and L R Faulkner, Electrochemical methods: Fundamentals and applications, 2nd edn (Wiley, New York, 2001)

  44. C A M Huitle, M C Lopez and M A Quiroz, Mater. Res. 12(4), 375 (2009)

  45. H Heli, A Jabbari, M Zarghan and A A Moosavi-Movahedi, Sens. Actuators B Chem.  140, 245 (2009)

    Article  Google Scholar 

  46. L B Vieira, J Ueta, L R L Pereira, L B Vieira, J Ueta and L R L Pereira, Braz. J. Pharm. Sci.  51, 329 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-304500/2019-4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Finance Code 001), PEC-PG program and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FErnando Gomes DE Souza Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, A.I., Materón, E.M., Zanoni, M.V.B. et al. Electrochemical detection of sotalol on a magnetographite-epoxy electrode using magnetite nanoparticles. Pramana - J Phys 94, 114 (2020). https://doi.org/10.1007/s12043-020-01983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01983-0

Keywords

PACS Nos

Navigation