Skip to main content
Log in

A generalized finite element method for three-dimensional fractures in fiber-reinforced composites

  • Recent advances in Computational Mechanics and Innovative Materials
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents a methodology for the analysis of three-dimensional static fractures in fiber-reinforced materials. Fibers are discretely modeled using a modification of the embedded reinforcement method with bond Slip (mERS) that allows its combination with a generalized finite element method (GFEM) for three-dimensional fractures. Since the GFEM mesh does not need to fit fracture surfaces or fibers, the GFEM–mERS can handle fibers bridging across crack faces at arbitrary angles. The method is verified against three-dimensional FEM solutions using conformal discretizations for crack surfaces and fiber boundaries. The comparison of the method against experimental data and convergence studies of the h- and p-version of the method is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Abaqus (2014) Version 6.14 documentation. Dassault Systemes Simulia Corporation, Providence, RI

  2. Aragon A, Simone A (2017) The discontinuity-enriched finite element method. Int J Numer Methods Eng 112(11):1589–1613. https://doi.org/10.1002/nme.5570

    Article  MathSciNet  Google Scholar 

  3. Babuška I, Melenk J (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    Article  MathSciNet  Google Scholar 

  4. Balakrishnan S, Murray DW (1986) Finite element prediction of reinforced concrete behavior. Technical Report Structural Engineering Report No. 138, Department of Civil Engineering, The University of Alberta

  5. Belytschko T, Lu Y, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  Google Scholar 

  6. Bolander JE, Saito S (1997) Discrete modeling of short-fiber reinforcement in cementitious composites. Adv Cement Based Mater 6(3):76–86

    Article  Google Scholar 

  7. Bolander JE, Choi S, Duddukuri SR (2008) Fracture of fiber-reinforced cement composites: effects of fiber dispersion. Int J Fract 154(1–2):73–86

    Article  Google Scholar 

  8. Bouhala L, Makradi A, Belouettar S, Kiefer-Kamal H, Fréres P (2013) Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model. Compos B 55:352–361

    Article  Google Scholar 

  9. Caner FC, Bažant ZP, Wendner R (2013) Microplane model M7f for fiber reinforced concrete. Eng Fract Mech 105:41–57

    Article  Google Scholar 

  10. Carvalho M, Barros J, Zhang Y, Dias-da-Costa D (2020) A computational model for simulation of steel fibre reinforced concrete with explicit fibres and cracks. Comput Methods Appl Mech Eng 363:112879. https://doi.org/10.1016/j.cma.2020.112879

    Article  MathSciNet  MATH  Google Scholar 

  11. Cusatis G, Pelessone D, Mencarelli A (2011) Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: theory. Cement Concrete Compos 33(9):881–890

    Article  Google Scholar 

  12. Dias-da-Costa D, Alfaiate J, Sluys L, Areias P, Júlio E (2013) An embedded formulation with conforming finite elements to capture strong discontinuities. Int J Numer Methods Eng 93(2):224–244. https://doi.org/10.1002/nme.4393

    Article  MathSciNet  MATH  Google Scholar 

  13. Duarte C, Babuška I, Oden J (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77:215–232. https://doi.org/10.1016/S0045-7949(99)00211-4

    Article  MathSciNet  Google Scholar 

  14. Elwi AE, Hrudey TM (1989) Finite element model for curved embedded reinforcement. J Eng Mech 115(4):740–754

    Article  Google Scholar 

  15. Farahani BV, Tavares PJ, Belinha J, Moreira PMGP (2017) A fracture mechanics study of a compact tension specimen: digital image correlation, finite element and meshless method. In: 2nd International conference on structural integrity, ICSI 2017, vol 5, pp 920–927

  16. Garzon J, O’Hara P, Duarte C, Buttlar W (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273. https://doi.org/10.1002/nme.4573

    Article  MATH  Google Scholar 

  17. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198

    Article  MathSciNet  Google Scholar 

  18. Gupta P, Duarte C, Dhankhar A (2017) Accuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite Element Method. Eng Fract Mech 179:120–153. https://doi.org/10.1016/j.engfracmech.2017.03.035

    Article  Google Scholar 

  19. Hartl H (2002) Development of a continuum-mechanics-based tool for 3D finite element analysis of reinforced concrete structures and application to problems of soil-structure interaction. PhD thesis, Graz University of Technology

  20. Heath M (1997) Scientific computing: an introductory survey. McGraw-Hill series in computer science. McGraw-Hill, Boston. ISBN 9780070276840

  21. Jones A (2015) Solvent-based self-healing approaches for fiber-reinforced composites. PhD thesis, University of Illinois at Urbana-Champaign

  22. Kang J, Kim K, Lim Y, Bolander J (2014) Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int J Solids Struct 51:1970–1979

    Article  Google Scholar 

  23. Karimi M, Bayesteh H, Mohammadi S (2019) An adapting cohesive approach for crack-healing analysis in SMA fiber-reinforced composites. Comput Methods Appl Mech Eng 349:550–575

    Article  MathSciNet  Google Scholar 

  24. Kozicki J, Tejchman J (2010) Effect of steel fibres on concrete behavior in 2D and 3D simulations using lattice model. Arch Mech 62:1–28

    MATH  Google Scholar 

  25. Kruzic JJ (2009) Predicting fatigue failures. Science 325:156–158

    Article  Google Scholar 

  26. Kruzic JJ, Campbell JP, Ritchie RO (1999) On the fatigue behavior of g-based titanium aluminides: role of small cracks. Acta Mater 47:801–816

    Article  Google Scholar 

  27. Kunieda M, Ogura H, Ueda N, Nakamura H (2011) Tensile fracture process of strain hardening cementitious composites by means of three-dimensional meso-scale analysis. Cement Concrete Compos 33:956–965

    Article  Google Scholar 

  28. Lee SC, Cho JY, Vecchio FJ (2011) Diverse embedment model for steel fiber-reinforced concrete in tension: model verification. ACI Mater J 108:526–535

    Google Scholar 

  29. Lee SC, Cho JY, Vecchio FJ (2013) Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. ACI Mater J 110:403–412

    Google Scholar 

  30. Lei Y (2008) Finite element crack closure analysis of a compact tension specimen. Int J Fatigue 30:21–31

    Article  Google Scholar 

  31. Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  Google Scholar 

  32. Lusti H, Gusev A (2004) Finite element predictions for the thermoelastic properties of nanotube reinforced polymers. Model Simul Mater Sci Eng 12:107–119

    Article  Google Scholar 

  33. Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MathSciNet  Google Scholar 

  34. Miller-Stephenson (2018) Manual properties EPON. https://miller-stephenson.com. Accessed Mar 2018

  35. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MathSciNet  Google Scholar 

  36. Mortazavi B, Baniassadi M, Bardon J, Ahzi S (2013) Modeling of two-phase random composite materials by finite element. Compos Part B Eng 45:1117–1125

    Article  Google Scholar 

  37. Octávio C, Dias-da-Costa D, Alfaiate J, Júlio E (2016) Modelling the behaviour of steel fibre reinforced concrete using a discrete strong discontinuity approach. Eng Fracture Mech 154:12–23

    Article  Google Scholar 

  38. Oden J, Duarte C (1997) Chapter: clouds, cracks and FEMs. In Reddy B (ed) Recent developments in computational and applied mechanics. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, pp 302–321. http://gfem.cee.illinois.edu/papers/jMartin_color.pdf. Accessed July 2020

  39. Oden J, Duarte C, Zienkiewicz O (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153:117–126. https://doi.org/10.1016/S0045-7825(97)00039-X

    Article  MathSciNet  MATH  Google Scholar 

  40. Owenscorning (2018) Manual properties glass fiber 158B-AA-675. https://www.owenscorning.com/. Accessed Mar 2018

  41. Park K, Paulino G, Roesler J (2010) Cohesive fracture model for functionally graded fiber reinforced concrete. Cement Concrete Res 40(6):956–965. https://doi.org/10.1016/j.cemconres.2010.02.004

    Article  Google Scholar 

  42. Park SH, Kim DJ, Ryu GS, Koh KT (2012) Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement Concrete Compos 34:172–184

    Article  Google Scholar 

  43. Pereira J, Duarte C, Guoy D, Jiao X (2009) Hp-generalized FEM and crack surface representation for non-planar 3-D cracks. Int J Numer Methods Eng 77(5):601–633. https://doi.org/10.1002/nme.2419

    Article  MathSciNet  MATH  Google Scholar 

  44. Pike MG, Oskay C (2015a) Modeling random short nanofiber- and microfiber-reinforced composites using the extended finite-element method. J Nanomech Micromech 5(1):A4014005. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000092

    Article  Google Scholar 

  45. Pike MG, Oskay C (2015b) XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem Anal Des 106:16–31

    Article  Google Scholar 

  46. Pike MG, Oskay C (2016) Three-dimensional modeling of short fiber-reinforced composites with extended finite-element method. J Eng Mech 142:11–16

    Article  Google Scholar 

  47. Radtke F, Simone A, Sluys L (2010) A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres. Int J Numer Methods Eng 84(6):708–732. https://doi.org/10.1002/nme.2916

    Article  MathSciNet  MATH  Google Scholar 

  48. Reddy J, Robbins D Jr (1994) Theories and computational models for composite laminates. Appl Mech Rev 47(6):147–169. https://doi.org/10.1115/1.3111076

    Article  Google Scholar 

  49. Ruiz G (2001) Propagation of a cohesive crack crossing a reinforcement layer. Int J Fracture 111:265–282

    Article  Google Scholar 

  50. Sanchez-Rivadeneira A, Shauer N, Mazurowski B, Duarte C (2020) A stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic fracture mechanics. Comput Methods Appl Mech Eng 364:112970. https://doi.org/10.1016/j.cma.2020.112970

    Article  MathSciNet  MATH  Google Scholar 

  51. Schauffert EA, Cusatis G (2012) Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior. J Eng Mech 138(7):834–841

    Article  Google Scholar 

  52. Schweitzer M (2012) Generalizations of the finite element method. Central Eur J Math 10:3–24. https://doi.org/10.2478/s11533-011-0112-1

    Article  MathSciNet  MATH  Google Scholar 

  53. Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cement Concrete Compos 33:572–585

    Article  Google Scholar 

  54. Spring D, Paulino G (2015) Computational homogenization of the debonding of particle reinforced composites: the role of interphases in interfaces. Comput Mater Sci 109:209–224. https://doi.org/10.1016/j.commatsci.2015.07.012

    Article  Google Scholar 

  55. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193

    Article  MathSciNet  Google Scholar 

  56. Tian W, Qi L, Su C, Zhou J, Jing Z (2016) Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: effect of fiber orientation. Compos Struct 152:408–417

    Article  Google Scholar 

  57. Visalvanich K, Naaman AE (1983) Fracture model for fiber reinforced concrete. J Am Concrete Inst 80:128–138

    Google Scholar 

  58. Zhang J, Deng S, Wang Y, Ye L, Zhou L, Zhang Z (2013) Effect of nanoparticles on interfacial properties of carbon fibre-epoxy composites. Compos Part A Appl Sci Manuf 55:35–44

    Article  Google Scholar 

  59. Zhao D, Botsis J (1989) Experimental and numerical studies in model composites part I: experimental results. Int J Fracture 82:153–174

    Article  Google Scholar 

  60. Zhao L, Zhi J, Zhang J, Liu Z, Hu N (2016) XFEM simulation of delamination in composite laminates. Compos A 80:61–71

    Article  Google Scholar 

  61. Zienkiewicz O, Owen D, Phillips D, Nayak G (1972) Finite element methods in the analysis of reactor vessels. Nuclear Eng Des 20(2):507–541

    Article  Google Scholar 

Download references

Funding

Ph. D. Alves and C. A. Duarte gratefully acknowledge the partial support from the National Science Foundation under contract number 1030569 and the Brazilian National Council for Scientific and Technological Development (CNPq). A. Simone gratefully acknowledge financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no 617972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Armando Duarte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

In honor of Professor J.N. Reddy for his 75th Birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 Appendix 1.1: 3DFEM Reference Solution Computed with Abaqus

This appendix presents the main steps adopted in the definition of 3DFEM models that provide reference solutions for the proposed GFEM–mERS. The models are defined and solved using Abaqus  [1]. The Compact Tension specimen with five inclined fibers shown in Fig. 35 is used as an example. All other 3DFEM models are defined using the same procedure and element types.

The fibers and the matrix are independent Abaqus Parts of the problem. Each Part of the geometry is assembled into the Model as a second step in Abaqus. Therefore, the final model is composed by the two components. As an example, Fig. 35 depicts these two components (fibers and matrix) for CT specimen described in Sect. 5.5.

Fig. 35
figure 35

Abaqus model of CT specimen with inclined fibers

After creating the geometry and setting up the material properties, boundary conditions are applied as shown in Fig. 23. Nodal Dirichlet boundary conditions are prescribed at the specimen openings. Additional point constraints are used to prevent rigid body motions. Other approaches to model the boundary conditions at the specimen openings are available in the literature  [15, 30]. Numerical experiments not reported here show that they lead to nearly identical results as those from the adopted approach.

After prescribing the boundary conditions, the tetrahedron mesh of the matrix domain is refined. Fiber and matrix meshes are conforming along their interface. Abaqus cohesive elements COH3D4 are used at the interface between 3-D matrix and fiber elements. The crack is modeled using double nodes in order to represent the displacement discontinuity across the crack surface. The singular behavior at the crack front is approximated using a highly refined mesh around the crack front as shown in Fig. 23. A very refined mesh is also used in the fiber domain. Figure 27 shows the details of the tetrahedron meshes used for the fibers.

1.2 Appendix 1.2: Derivation of axial strain transformation

The strain tensor of the matrix can be transformed to the fiber coordinate system using

$$\begin{aligned} \hat{{\varvec{\epsilon }}}' = {{\varvec{Q}}} \hat{{\varvec{\epsilon }}} {{\varvec{Q}}}^T \end{aligned}$$
(A.1)

where \(\hat{{\varvec{\epsilon }}}'\) is the strain tensor in the fiber coordinate system, \(\hat{{\varvec{\epsilon }}}\) is the strain tensor in the matrix coordinate system and \({{\varvec{Q}}}\) is the rotation matrix between these systems. The components of these tensors are given by

$$\begin{aligned} \hat{{\varvec{\epsilon }}}'= & {} \left[ \begin{array}{ccc} \hat{\epsilon }_{11}' &{}\quad \hat{\epsilon }_{12}' &{}\quad \hat{\epsilon }_{13}' \\ \hat{\epsilon }_{12}' &{}\quad \hat{\epsilon }_{22}' &{}\quad \hat{\epsilon }_{32}' \\ \hat{\epsilon }_{13}' &{}\quad \hat{\epsilon }_{23}' &{}\quad \hat{\epsilon }_{33}' \\ \end{array} \right] \end{aligned}$$
(A.2)
$$\begin{aligned} \hat{{\varvec{\epsilon }}}= & {} \left[ \begin{array}{ccc} \hat{\epsilon }_{11} &{}\quad \hat{\epsilon }_{12} &{}\quad \hat{\epsilon }_{13} \\ \hat{\epsilon }_{12} &{}\quad \hat{\epsilon }_{22} &{}\quad \hat{\epsilon }_{32} \\ \hat{\epsilon }_{13} &{}\quad \hat{\epsilon }_{23} &{}\quad \hat{\epsilon }_{33} \\ \end{array} \right] \end{aligned}$$
(A.3)
$$\begin{aligned} {{\varvec{Q}}}= & {} \left[ \begin{array}{ccc} Q_{11} &{}\quad Q_{12} &{}\quad Q_{13} \\ Q_{21} &{}\quad Q_{22} &{}\quad Q_{23} \\ Q_{31} &{}\quad Q_{32} &{}\quad Q_{33} \\ \end{array} \right] = \left[ \begin{array}{ccc} \cos (\theta _x^{x'}) &{}\quad \cos (\theta _y^{x'}) &{}\quad \cos (\theta _z^{x'}) \\ \cos (\theta _x^{y'}) &{}\quad \cos (\theta _y^{y'}) &{}\quad \cos (\theta _z^{y'}) \\ \cos (\theta _x^{z'}) &{}\quad \cos (\theta _y^{z'}) &{}\quad \cos (\theta _z^{z'}) \\ \end{array} \right] \end{aligned}$$
(A.4)

In (A.4), \(\theta\) is the angle between a fiber coordinate system direction and a global coordinate system direction. For example, \(\theta ^{x'}_x\), is the angle between coordinate axes \(x'\) and x. Equation (A.1) in index notation is given by

$$\begin{aligned} \hat{\epsilon }_{ij}' = Q_{ik} \hat{\epsilon }_{kl} Q_{lk}^T \end{aligned}$$
(A.5)

Since the only component of interest is \(\hat{\epsilon }_{11}'\) (strain in the fiber direction), from (A.5) we have

$$\begin{aligned} \hat{\epsilon }_{11}' = Q_{1k} \hat{\epsilon }_{kl} Q_{l1}^T = Q_{1k} \hat{\epsilon }_{kl} Q_{1l} \end{aligned}$$
(A.6)

Expanding the previous expression

$$\begin{aligned} \begin{array}{cccccc} \hat{\epsilon }_{11}' = &{} Q_{11} \hat{\epsilon }_{11} Q_{11} &{} + &{} Q_{12} \hat{\epsilon }_{21} Q_{11} &{} + &{} Q_{13} \hat{\epsilon }_{31} Q_{11} \\ &{} +Q_{11} \hat{\epsilon }_{11} Q_{11} &{} + &{} Q_{12} \hat{\epsilon }_{21} Q_{11} &{} + &{} Q_{13} \hat{\epsilon }_{31} Q_{11} \\ &{} +Q_{11} \hat{\epsilon }_{11} Q_{11} &{} + &{} Q_{12} \hat{\epsilon }_{21} Q_{11} &{} + &{} Q_{13} \hat{\epsilon }_{31} Q_{11} \\ \end{array} \end{aligned}$$
(A.7)

Writing it in matrix notation leads to

$$\begin{aligned} \hat{\epsilon }_{11}' = {\varvec{R \hat{{\varvec{\epsilon }}}^{*}}} \end{aligned}$$
(A.8)

where

$$\begin{aligned} {{\varvec{R}}}=\left[ \begin{array}{c} \cos ^2(\theta ^{x'}_x) \\ \cos ^2(\theta ^{x'}_y) \\ \cos ^2(\theta ^{x'}_z) \\ 2\cos (\theta ^{x'}_x)\cos (\theta ^{x'}_y) \\ 2\cos (\theta ^{x'}_y)\cos (\theta ^{x'}_z) \\ 2\cos (\theta ^{x'}_x)\cos (\theta ^{x'}_z) \end{array} \right] ^T \end{aligned}$$
(A.9)

and

$$\begin{aligned} {\varvec{\epsilon }}^{*}=\left[ \begin{array}{c} \epsilon _{11} \\ \epsilon _{22} \\ \epsilon _{33} \\ \epsilon _{12} \\ \epsilon _{13} \\ \epsilon _{23} \end{array} \right] \end{aligned}$$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, P.D., Simone, A. & Duarte, C.A. A generalized finite element method for three-dimensional fractures in fiber-reinforced composites. Meccanica 56, 1441–1473 (2021). https://doi.org/10.1007/s11012-020-01211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01211-4

Keywords

Navigation