Skip to main content
Log in

Diffusion-weighted imaging in the assessment of renal function in patients with diabetes mellitus type 2

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Investigation of functional magnetic resonance (MR) imaging role in early diagnosis of diabetic nephropathy (DN) in patients with diabetes mellitus (DM) type 2, by quantification of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values.

Material and methods

10 healthy volunteers and 91 DM type 2 patients were scanned using diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) sequences. Patients were divided into four groups based on the estimated glomerular filtration value (eGFR). ADC and FA values, calculated in six regions of interest in each kidney (cortex and medulla), were compared to eGFR and laboratory parameters of renal function.

Results

ADC values of DM patients were higher in the cortex than in the medulla (p < 0.01), while FA values were higher in the medulla (p = 0.284). Creatinine, cystatin C negatively correlated with ADC (cortex, medulla, parenchyma). Medullary FA were lower in DM patients and positively correlated with the eGFR (p = 0.049). Tractography showed disturbed structure in patients with impaired renal function.

Discussion

Medullary FA value is a more sensitive parameter than parenchymal ADC in the early detection of renal damage in DM patients. ADC and FA values are significant in the diagnosis of DN; further research is needed for the update and refinement of the established recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

DN:

Diabetic nephropathy

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FA:

Fractional anisotropy

ADC:

Apparent diffusion coefficient

GFR:

Glomerular filtration rate

FIESTA:

Fast imaging employing steady-state acquisition

FSPGR:

Fast-spoiled gradient

ROI:

Region of interest

Cys C:

Cystatin C

eGFR:

Estimate glomerular filtration rate

CKD-EPI:

Chronic Kidney Disease Epidemiology Collaboration

References

  1. Lu L, Sedor JR, Gulani V et al (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34(5):476–482

    PubMed  PubMed Central  Google Scholar 

  2. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21(11):2427–2433

    PubMed  Google Scholar 

  3. Hueper K, Hartung D, Gutberlet M et al (2012) Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Investig Radiol 47(7):430–437

    Google Scholar 

  4. Gaudiano C, Clementi V, Busato F et al (2013) Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol 23(6):1678–1685

    PubMed  Google Scholar 

  5. Caroli A, Schneider M, Friedli I et al (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(Suppl 2):ii29–ii40

    PubMed  PubMed Central  Google Scholar 

  6. Liu Z, Xu Y, Zhang J et al (2015) Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 25(3):652–660

    PubMed  Google Scholar 

  7. Chenevert TL, Galbán CJ, Ivancevic MK et al (2011) Diffusion coefficient measurement using a temperature-controlled fluid for quality control in multicenter studies. J Magn Reson Imaging 34(4):983–987

    PubMed  PubMed Central  Google Scholar 

  8. Gürses B, Kılıçkesmez Ö, Taşdelen N, Fırat Z, Gürmen N (2011) Diffusion tensor imaging of the kidney at 3 Tesla MRI: normative values and repeatability of measurements in healthy volunteers. Diagn Interv Radiol 17(4):317–322

    PubMed  Google Scholar 

  9. Notohamiprodjo M, Glaser C, Herrmann KA et al (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Investig Radiol 43(10):677–685

    Google Scholar 

  10. Heusch P, Wittsack HJ, Kröpil P et al (2013) Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3 T. J Magn Reson Imaging 37:233–236

    PubMed  Google Scholar 

  11. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235(3):911–917

    PubMed  Google Scholar 

  12. Ries M, Basseau F, Tyndal B et al (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Magn Reson Imaging 17(1):104–113

    Google Scholar 

  13. Wang W, Pui MH, Guo Y, Hu X, Wang H, Yang D (2014) MR diffusion tensor imaging of normal kidneys. J Magn Reson Imaging 40(5):1099–1102

    PubMed  Google Scholar 

  14. Yang D, Ye Q, Williams DS, Hitchens TK, Ho C (2004) Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology 231(3):702–709

    PubMed  Google Scholar 

  15. Wang YC, Feng Y, Lu CQ, Ju S (2018) Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy. Eur Radiol 28(8):3326–3334

    PubMed  Google Scholar 

  16. Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49

    PubMed  CAS  Google Scholar 

  17. Fukuda Y, Ohashi I, Hanafusa K et al (2000) Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 11(2):156–160

    PubMed  CAS  Google Scholar 

  18. Kataoka M, Kido A, Yamamoto A et al (2009) Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging 29(3):736–744

    PubMed  Google Scholar 

  19. Herget-Rosenthal S (2011) Imaging techniques in the management of chronic kidney disease: current developments and future perspectives. Semin Nephrol 31(3):283–290

    PubMed  Google Scholar 

  20. Lanzman RS, Ljimani A, Pentang G et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3 T. Radiology 266:218–225

    PubMed  Google Scholar 

  21. Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263(3):758–769

    PubMed  Google Scholar 

  22. Zhang JL, Sigmund EE, Chandarana H et al (2010) Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 254(3):783–792

    PubMed  PubMed Central  Google Scholar 

  23. Blondin D, Lanzman RS, Klasen J et al (2011) Diffusion-attenuated MRI signal of renal allografts: comparison of two different statistical models. AJR Am J Roentgenol 196(6):W701–W705

    PubMed  Google Scholar 

  24. Blondin D, Lanzman RS, Mathys C et al (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. Rofo 181(12):1162–1167

    PubMed  CAS  Google Scholar 

  25. Thoeny HC, Binser T, Roth B, Kessler TM, Vermathen P (2009) Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 252(3):721–728

    PubMed  Google Scholar 

  26. Zhang JL, Sigmund EE, Rusinek H et al (2012) Optimization of b value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 67(1):89–97

    PubMed  Google Scholar 

  27. Zheng Z, Shi H, Zhang J, Zhang Y (2014) Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging. PLoS ONE 9(12):e113469

    PubMed  PubMed Central  Google Scholar 

  28. Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C (2003) Functional MRI of the kidney. Abdom Imaging 28(2):164–175

    PubMed  CAS  Google Scholar 

  29. Gaudiano C, Clementi V, Busato F et al (2011) Renal diffusion tensor imaging: is it possible to define the tubular pathway? A case report. Magn Reson Imaging 29(7):1030–1033

    PubMed  Google Scholar 

  30. Cheung JS, Fan SJ, Chow AM, Zhang J, Man K, Wu EX (2010) Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. NMR Biomed 23(5):496–502

    PubMed  Google Scholar 

  31. Xu X, Fang W, Ling H, Chai W, Chen K (2010) Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study. Eur Radiol 20(4):978–983

    PubMed  Google Scholar 

  32. Karadeli E, Ulu EM, Yilmaz S, Durukan E (2009) Diffusion-weighted MRI of the kidneys in patients with familial Mediterranean fever: initial experience. Diagn Interv Radiol 15:252–255

    PubMed  Google Scholar 

  33. Wang W, Pui MH, Guo Y, Wang L, Wang H, Liu M (2014) 3T magnetic resonance diffusion tensor imaging in chronic kidney disease. Abdom Imaging 39(4):770–775

    PubMed  Google Scholar 

  34. Çakmak P, Yağcı AB, Dursun B, Herek D, Fenkçi SM (2014) Renal diffusion-weighted imaging in diabetic nephropathy: correlation with clinical stages of disease. Diagn Interv Radiol 20(5):374–378

    PubMed  PubMed Central  Google Scholar 

  35. Zhao J, Wang ZJ, Liu M et al (2014) Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI. Clin Radiol 69(11):1117–1122

    PubMed  CAS  Google Scholar 

  36. Yalçin-Şafak K, Ayyildiz M, Ünel SY, Umarusman-Tanju N, Akça A, Baysal T (2015) The relationship of ADC values of renal parenchyma with CKD stage and serum creatinine levels. Eur J Radiol Open 3:8–11

    PubMed  PubMed Central  Google Scholar 

  37. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A (2012) Diffusion-weighted MRI in assessment of renal dysfunction. Indian J Radiol Imaging 22(3):155–159

    PubMed  PubMed Central  Google Scholar 

  38. Xu Y, Wang X, Jiang X (2007) Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J Magn Reson Imaging 26(3):678–681

    PubMed  Google Scholar 

  39. Razek AAKA, Al-Adlany MAAA, Alhadidy AM, Atwa MA, Abdou NEA (2017) Diffusion tensor imaging of the renal cortex in diabetic patients: correlation with urinary and serum biomarkers. Abdom Radiol (NY) 42(5):1493–1500

    Google Scholar 

  40. Chen X, Xiao W, Li X, He J, Huang X, Tan Y (2014) In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria. Front Med 8(4):471–476

    PubMed  Google Scholar 

  41. Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M (1999) Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 9(6):832–837

    PubMed  CAS  Google Scholar 

  42. Muller MF, Prasad PV, Bimmler D, Kaiser A, Edelman RR (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193(3):711–715

    PubMed  CAS  Google Scholar 

  43. Li Q, Li J, Zhang L, Chen Y, Zhang M, Yan F (2014) Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study. Eur J Radiol 83(5):756–762

    PubMed  Google Scholar 

  44. Carbone SF, Gaggioli E, Ricci V, Mazzei F, Mazzei MA, Volterrani L (2007) Diffusion-weighted magnetic resonance imaging in the evaluation of renal function: a preliminary study. Radiol Med 112:1201–1210

    PubMed  CAS  Google Scholar 

  45. Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky AI, Bane O et al (2020) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA 33(1):197–198

    PubMed  PubMed Central  Google Scholar 

  46. Kido A, Kataoka M, Yamamoto A, Nakamoto Y, Umeoka S, Koyama T et al (2010) Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla. Acta Radiol 51(9):1059–1063

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Anna Caroli from Institute Mario Negri, Medical Imaging Unit, Bergamo, Italy, and Azim Celik, Ph.D, Regional Research Manager—Eastern Europe and Turkey, GE Healthcare, for the help with reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TM took the lead in writing the manuscript, performed the acquisition of the data, processed, analyzed and interpreted the data. ON conceived and supervised the study, processed and analyzed the data, added in interpreting the results, worked on the manuscript. UM drafted the manuscript, designed figures and tables and worked out the technical details. MM contributed to the study by choosing the relevant patients with DM type 2. VT contributed to the statistical analysis of the data.

Corresponding author

Correspondence to Tijana Mrđanin.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Funding

No fundings were received for this study.

Research invloving human and animal rights

This article does not contain any studies involving animals performed by any of the authors.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants involved in the study

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 39 kb)

Appendices

Appendix

See Figs. 1, 2, Tables 1, 2, 3 and 4.

Fig. 1
figure 1

Positions of six ROIs in both kidney’ cortex and medulla (upper, middle, lower pole) on FSPGR T1 weighted FS image (left), complementary ADC map (middle) and FA map (right). Healthy man, 28 years old, BMI 32.1 kg/m2, Cr 75 µmol/l, Cys C 0.843 mg/l, eGFR 124 ml/min/1.73 m2. Preserved corticomedullary differentiation

Fig. 2
figure 2

Mean ADC and FA values in the control group and patients with DM type 2 according to the ROI position. Note: Parenchyma implies medulla and cortex

Table 1 Parameters of MR sequences for kidneys
Table 2 Results of Pearson’s correlation test between laboratory parameters and ADC, FA values in patients with DM type 2
Table 3 Patient distribution according to eGFR
Table 4 Results of the correlation test between different groups of patients

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrđanin, T., Nikolić, O., Molnar, U. et al. Diffusion-weighted imaging in the assessment of renal function in patients with diabetes mellitus type 2. Magn Reson Mater Phy 34, 273–283 (2021). https://doi.org/10.1007/s10334-020-00869-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00869-x

Keywords

Navigation