Skip to main content
Log in

Study on the physico-chemical properties of reduced graphene oxide with different degrees of reduction temperature

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A thermal reduction is a promising approach for the synthesis of graphene owing to its eco-friendly nature, cost-effective and mass production. However, the elucidation of the structural conformation in graphene oxide concerning for the reduction in temperature remains unclear. In this study, commercially available graphite (Gr) powder was first exploited in distilled water, which was chemically oxidized by using sulphuric acid, potassium permanganate and sodium nitrate. The chemically reduced graphene oxide (GO) was further reduced in a tubular furnace under an inert atmosphere. The Fourier transform infrared spectroscopy analysis revealed the presence of carbonyls, hydroxyls, ethers, epoxides and ketones present between the stacked layers of graphene oxide, which were eliminated in the thermally reduced graphene oxide (rGO) at the temperature range of 100–600 °C. The atomic concentration of oxygen and carbon in the graphene oxide and reduced graphene oxide were evaluated from the X-ray photoelectron spectroscopy. The atomic concentration of oxygen in graphene oxide was 29.80% (w/w) that decreased to 13.68% at 500 °C reduction temperature, confirming the elimination of oxygen-containing functional groups from the stacked structure of graphene oxide. The purity of graphene obtained from the thermal reduction of graphene oxide was 87% which has never been reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    CAS  PubMed  Google Scholar 

  2. A.K. Geim, Science 324, 1530–1534 (2009)

    CAS  PubMed  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    CAS  PubMed  Google Scholar 

  4. H.C. Lee, W.W. Liu, S.P. Chai, A.R. Mohamed, C.W. Lai, C.S. Khe, C.H. Voon, U. Hashim, N.M. Hidayah, Procedia Chem. 19, 916–921 (2016)

    CAS  Google Scholar 

  5. M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R. Siddiqui, A.A. Al-warthan, W. Tremel, J. Mater. Chem. A 3, 18753–18808 (2015)

    CAS  Google Scholar 

  6. B.F. Machado, P. Serp, Catal. Sci. Technol. 2, 54–75 (2012)

    CAS  Google Scholar 

  7. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, Science 312, 1191–1196 (2006)

    CAS  PubMed  Google Scholar 

  8. W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, X. Liang, Nano Res. 2, 706–712 (2009)

    CAS  Google Scholar 

  9. M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M. Tascon, J. Phys. Chem. C 114, 6426–6432 (2010)

    CAS  Google Scholar 

  10. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499–3503 (2007)

    CAS  PubMed  Google Scholar 

  11. S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Carbon 48, 4466–4474 (2010)

    CAS  Google Scholar 

  12. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45(7), 1558–1565 (2007)

    CAS  Google Scholar 

  13. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3(2), 101 (2008)

    CAS  PubMed  Google Scholar 

  14. Y. Zhou, Q. Bao, L.A. Tang, Y. Zhong, K.P. Loh, Chem. Mater. 21, 2950–2956 (2009)

    CAS  Google Scholar 

  15. M. Veerapandian, M.H. Lee, K. Krishnamoorthy, K. Yun, Carbon 50, 4228–4238 (2012)

    CAS  Google Scholar 

  16. S. Pei, H.M. Cheng, Carbon 50, 3210–3228 (2012)

    CAS  Google Scholar 

  17. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Si, E.T. Samulski, Nano Lett. 8, 1679–1682 (2008)

    CAS  PubMed  Google Scholar 

  19. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. 16, 155–158 (2006)

    CAS  Google Scholar 

  20. D. Cai, M. Song, J. Mater. Chem. 17, 3678–3680 (2007)

    CAS  Google Scholar 

  21. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Chem. Mater. 21, 3514–3520 (2009)

    CAS  Google Scholar 

  22. J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater. 22, 2213–2218 (2010)

    CAS  Google Scholar 

  23. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)

    CAS  PubMed  Google Scholar 

  24. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47, 145–152 (2009)

    CAS  Google Scholar 

  25. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987–1992 (2009)

    CAS  Google Scholar 

  26. H.H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Sci. Rep. 8, 6849 (2018)

    PubMed  PubMed Central  Google Scholar 

  27. C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10, 1144–1148 (2010)

    CAS  PubMed  Google Scholar 

  28. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577–2583 (2009)

    CAS  Google Scholar 

  29. G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y.B. Cohen, H. Bianco-Peled, Carbon 43, 641–649 (2005)

    CAS  Google Scholar 

  30. H. Wang, J.T. Robinson, G. Diankov, H. Dai, J. Am. Chem. Soc. 132, 3270–3271 (2010)

    CAS  PubMed  Google Scholar 

  31. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, ACS Nano 4, 6557–6564 (2010)

    CAS  PubMed  Google Scholar 

  32. B.C. Brodie, Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)

    Google Scholar 

  33. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740–2749 (2006)

    CAS  Google Scholar 

  34. B.S. Singu, K.R. Yoon, J. Alloys Compd. 770, 1189–1199 (2019)

    CAS  Google Scholar 

  35. N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Appl. Surf. Sci. 463, 132–140 (2019)

    CAS  Google Scholar 

  36. K.K. De Silva, H.H. Huang, R. Joshi, M. Yoshimura, Carbon 166, 74–90 (2020)

    Google Scholar 

  37. X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 114, 832–842 (2009)

    Google Scholar 

  38. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    CAS  Google Scholar 

  39. G. Venugopal, K. Krishnamoorthy, R. Mohan, S.J. Kim, Mater. Chem. Phys. 132, 29–33 (2012)

    CAS  Google Scholar 

  40. C. Hontoria-Lucas, A.J. Lopez-Peinado, J.D. Lopez-Gonzalez, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Carbon 33, 1585–1592 (1995)

    CAS  Google Scholar 

  41. C.N. Rao, K. Biswas, K.S. Subrahmanyam, A. Govindaraj, J. Mater. Chem. 19, 2457–2469 (2009)

    CAS  Google Scholar 

  42. N.M. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman, C.S. Khe, U. Hashim, H.C. Lee, AIP Conf. Proc. 1892, 150002 (2017)

    Google Scholar 

  43. S.K. Mishra, S.N. Tripathi, V. Choudhary, B.D. Gupta, Sens. Actuator B Chem. 199, 190–200 (2014)

    CAS  Google Scholar 

  44. F. Babak, H. Abolfazl, R. Alimorad, G. Parviz, Sci. World J. 2014, 10 (2014)

    Google Scholar 

  45. H.M. Ju, S.H. Choi, S.H. Huh, J. Korean Phys. Soc. 57, 1649–1652 (2010)

    CAS  Google Scholar 

  46. J. Chen, B. Yao, C. Li, G. Shi, Carbon 64, 225–229 (2013)

    CAS  Google Scholar 

  47. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192–8195 (2008)

    CAS  Google Scholar 

  48. J. Coates, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers, M.L. McKelvy (Wiley, Hoboken, 2006)

    Google Scholar 

  49. H. Fujimoto, Carbon 41, 1585–1592 (2003)

    CAS  Google Scholar 

  50. H. Wu, W. Zhao, H. Hu, G. Chen, J. Mater. Chem. 21, 8626–8632 (2011)

    CAS  Google Scholar 

  51. P.P. Jose, M.S. Kala, N. Kalarikkal, S. Thomas, Mater. Today Proc. 5, 16306–16312 (2018)

    CAS  Google Scholar 

  52. H.K. Jeong, Y.P. Lee, R.J. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, J. Am. Chem. Soc. 130, 1362–1366 (2008)

    CAS  PubMed  Google Scholar 

  53. D. Lin, Y. Liu, Z. Liang, H.W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 11, 626–632 (2016)

    CAS  PubMed  Google Scholar 

  54. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, Phys. Rev. Lett. 106, 105505 (2011)

    CAS  PubMed  Google Scholar 

  55. C. Botas, P. Alvarez, C. Blanco, M.D. Gutierrez, P. Ares, R. Zamani, J. Arbiol, J.R. Morante, R. Menendez, RSC Adv. 2, 9643–9650 (2012)

    CAS  Google Scholar 

  56. S. Eigler, C. Dotzer, A. Hirsch, Carbon 50, 3666–3673 (2012)

    CAS  Google Scholar 

  57. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126–1130 (1970)

    CAS  Google Scholar 

  58. K.S. Vasu, B. Chakraborty, S. Sampath, A.K. Sood, Solid State Commun. 150, 1295–1298 (2010)

    CAS  Google Scholar 

  59. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)

    CAS  PubMed  Google Scholar 

  60. L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11, 3190–3196 (2011)

    PubMed  Google Scholar 

  61. J. Hong, M.K. Park, E.J. Lee, D. Lee, D.S. Hwang, S. Ryu, Sci. Rep. 3, 2700 (2013)

    PubMed  PubMed Central  Google Scholar 

  62. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    CAS  Google Scholar 

  63. J. Robertson, E.P. Oreilly, Phys. Rev. B. 35, 2946 (1987)

    CAS  Google Scholar 

  64. D.S. Knight, W.B. White, J. Mater. Res. 4, 385–393 (1989)

    CAS  Google Scholar 

  65. T.C. Chiang, F. Seitz, Ann. Phys. 10, 61–74 (2001)

    CAS  Google Scholar 

  66. F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal. B Environ. 93, 194–204 (2009)

    CAS  Google Scholar 

  67. M. Green, G. Marom, J. Li, J.K. Kim, Macromol. Rapid Commun. 29, 1254–1258 (2008)

    CAS  Google Scholar 

  68. Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, J. Mater. Chem. 20, 743–748 (2010)

    CAS  Google Scholar 

  69. J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M. Tascon, Langmuir 25, 5957–5968 (2009)

    CAS  PubMed  Google Scholar 

  70. J. Cao, G.Q. Qi, K. Ke, Y. Luo, W. Yang, B.H. Xie, M.B. Yang, J. Mater. Sci. 47, 5097–5105 (2012)

    CAS  Google Scholar 

  71. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217–224 (2009)

    CAS  PubMed  Google Scholar 

  72. L.Z. Fan, J.L. Liu, R. Ud-Din, X. Yan, X. Qu, Carbon 50, 3724–3730 (2012)

    CAS  Google Scholar 

  73. S. Kundu, Y. Wang, W. Xia, M. Muhler, J. Phys. Chem. C 112, 16869–16878 (2008)

    CAS  Google Scholar 

  74. B.V. Crist, XPS Reports 1 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could appear to influence the work reported in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Divya, N. & Ratan, J.K. Study on the physico-chemical properties of reduced graphene oxide with different degrees of reduction temperature. J IRAN CHEM SOC 18, 201–211 (2021). https://doi.org/10.1007/s13738-020-02014-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02014-w

Keywords

Navigation