Skip to main content

Advertisement

Log in

Computational modeling of viscoplastic polymeric material response during micro-indentation tests

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The computational modeling of instrumented indentation tests used to characterize material properties is challenging. It is mainly due to the computational techniques demanded to couple the complex physical mechanisms involved, such as, for example, the time-dependent inelastic material response to loads during contact. Therefore, this work aims to simulate the mechanical response of the poly vinylidene fluoride (PVDF) during a micro-indentation test considering a viscoplastic material model, and a prescribed load approach, using the finite element method. Further, model validation is performed based on experimental data measured during the contact between the indenter and the PVDF. Numerical analyses were performed using COMSOL Multiphysics finite element software considering the loading scheme of the experimental tests of 800 mN/min rate during loading and unloading, and a 400 mN constant load, held by 30 s. Finally, a viscoplastic Chaboche constitutive model is presented considering two cases: (1) a perfectly plastic behavior, and (2) a nonlinear isotropic hardening behavior based on Voce and Hockett–Sherby exponential laws. While the latter models exhibit some discrepancy in capturing the experimental behavior, the former one has shown excellent agreement with the load-depth curves obtained experimentally, achieving the best fitting for the set of Chaboche parameters: \(A=1\,{\mathrm{{s}}}^{-1}, {n}=4.62\) and \(\sigma _\mathrm{{ref}}=132\) MPa. Moreover, several phenomenological features of viscoplastic behavior such as rate dependence, plastic flow (or creep) and stress relaxation were accurately provided by the Chaboche model when describing the behavior of the PVDF material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. $$\begin{aligned}\left\langle x \right\rangle ^{n} = \left\{ \begin{array}{ll} 0\,\, , & \quad x < 0 \\ x ^{n} , & \quad x \ge 0 \end{array} \right. \end{aligned}$$
  2. The value was also checked by computing the reaction force in the PVDF bottom surface.

  3. Being 24 solutions to be analyzed for each Chaboche model set perturbed \(in +/-\,10\%\): Six solutions for each of the two sets of parameters associated with the two experimental compression rates, and for each of the two hardening models, Voce, and H–S. See also Fig. 5.

Abbreviations

E :

Young’s modulus

\(F_{\mathrm{{y}}}\) :

Yield function

\(h_{\mathrm{max}}\) :

Maximum indentation depth

\(h_\mathrm{{r}}\) :

Residual or final indentation depth

\(h_\mathrm{{m}}, r_\mathrm{{m}}\) :

PVDF sample thickness and radius

\(J_{2}\) :

Second deviatoric stress invariant

P :

Applied load

\(P_{\mathrm{{max}}}\) :

Maximum applied load

\(Q_{\mathrm{{p}}}\) :

Plastic potential

\(r_i\) :

Indenter radius

S :

Deviatoric stress tensor

\(t_\mathrm{{h}}\) :

Holding load time

\(\varepsilon\) \(_{\mathrm{{vpe}}}\) :

Effective viscoplastic strain

\({{\varvec{\varepsilon }}}_{\mathrm{{vp}}}\) :

Viscoplastic strain tensor

\({{\varvec{\sigma }}}\) :

Cauchy’s stress tensor

\(\sigma _\mathrm{{Mises}}\) :

Effective von Mises stres

\(\sigma _\mathrm{{ys}}\) :

Yield Stress

\(\sigma _{\mathrm{{ys}}0}\) :

Initial yield stress

\(\sigma _{sat}, \beta\) :

Voce model parameters

\(\sigma _{\infty }, \gamma , m\) :

Hockett-Sherby model parameters

\(\sigma _\mathrm{{ref}}, A, n\) :

Chaboche model parameters

\(\nu\) :

Poisson’s ratio

References

  1. Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge. ISBN 9780521477581

  2. de Souza Neto, EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. Wiley. ISBN 9781119964544

  3. Dong H, Gao Y, Sinko PJ, Wu Z, Xu J, Jia L (2016) The nanotechnology race between china and the united states. Nano Today 11(1):7–12. https://doi.org/10.1016/j.nantod.2016.02.001

    Article  Google Scholar 

  4. Liu M, Lin J-Y, Lu C, Tieu KA, Zhou K, Koseki T (2017) Progress in indentation study of materials via both experimental and numerical methods. Crystals 7(10):1. https://doi.org/10.3390/cryst7100258

    Article  Google Scholar 

  5. Fischer-Cripps AC (2006) Critical review of analysis and interpretation of nanoindentation test data. Surface Coat Technol 200(14):4153–4165. https://doi.org/10.1016/j.surfcoat.2005.03.018

    Article  Google Scholar 

  6. Oliver Warren C, Pharr George M (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  7. Renner E, Gaillard Y, Richard F, Amiot F, Delobelle P (2016) Sensitivity of the residual topography to single crystal plasticity parameters in berkovich nanoindentation on fcc nickel. Int J Plast 77:118–140. https://doi.org/10.1016/j.ijplas.2015.10.002

    Article  Google Scholar 

  8. Dolph Corey K, da Silva Douglas J, Swenson Matthew J, Wharry Janelle P (2016) Plastic zone size for nanoindentation of irradiated fe-9%cr ods. J Nucl Mater 481:33–45. https://doi.org/10.1016/j.jnucmat.2016.08.033

    Article  Google Scholar 

  9. Mourad Khelifa, Vanessa Fierro, Alain Celzard (2014) Finite element simulation of nanoindentation tests using a macroscopic computational model. J Mech Sci Technol 28(8):3209–3217. https://doi.org/10.1007/s12206-014-0730-1

    Article  Google Scholar 

  10. Karimzadeh A, Ayatollahi MR, Alizadeh M (2014) Finite element simulation of nano-indentation experiment on aluminum 1100. Comput Mater Sci 81:595–600. https://doi.org/10.1016/j.commatsci.2013.09.019

    Article  Google Scholar 

  11. Pelletier H (2006) Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation. Tribol Int 39(7):593–606. https://doi.org/10.1016/j.triboint.2005.03.019

    Article  Google Scholar 

  12. Muliana Anastasia, Steward Rejanah, Haj-Ali Rami, Saxena Ashok (2002) Artificial neural network and finite element modeling of nanoindentation tests. Metall Mater Trans 33A(7):1939–1947. https://doi.org/10.1007/s11661-002-0027-3

    Article  Google Scholar 

  13. Alaboodi AS, Hussain Z (2019) Finite element modeling of nano-indentation technique to characterize thin film coatings. J King Saud Univ Eng Sci 31(1):61–69. https://doi.org/10.1016/j.jksues.2017.02.001

    Article  Google Scholar 

  14. Csanádi T, Németh D, Lofaj F (2017) Mechanical properties of hard w-c coating on steel substrate deduced from nanoindentation and finite element modeling. Experiment Mech 57:1057–1069. https://doi.org/10.1007/s11340-016-0190-x

    Article  Google Scholar 

  15. Okudur OO, Vanstreels K, De Wolf I, Hangen U (2016) Extraction of elastic modulus of porous ultra-thin low-k films by two-dimensional finite-element simulations of nanoindentation. J Appl Phys 119(2):025302. https://doi.org/10.1063/1.4939284

    Article  Google Scholar 

  16. Hu Z, Shrestha M, Fan QH (2016) Nanomechanical characterization of porous anodic aluminum oxide films by nanoindentation. Thin Solid Films 598:131–140. https://doi.org/10.1016/j.tsf.2015.11.073

    Article  Google Scholar 

  17. Bobzin K, Brögelmann T, Brugnara RH, Arghavani M, Yang T-S, Chang Y-Y, Chang S-Y (2015) Investigation on plastic behavior of HPPMS CRN, ALN and CRN/ALN-multilayer coatings using finite element simulation and nanoindentation. Surface Coat Technol 284:310–317. https://doi.org/10.1016/j.surfcoat.2015.07.081

    Article  Google Scholar 

  18. Zhao X, Xie Z, Munroe P (2011) Nanoindentation of hard multilayer coatings: finite element modelling. Mater Sci Eng: A 528(3):1111–1116. https://doi.org/10.1016/j.msea.2010.09.073

    Article  Google Scholar 

  19. Wang T, Fang TH, Lin YC (2008) Finite-element analysis of the mechanical behavior of AU/CU and CU/AU multilayers on silicon substrate under nanoindentation. Appl Phys A 90(3):457–463. https://doi.org/10.1007/s00339-007-4303-3

    Article  Google Scholar 

  20. Baral P, Guillonneau G, Kermouche G, Bergheau G, Loubet J-L, (2019) A new long-term indentation relaxation method to measure creep properties at the micro-scale with application to fused silica and PMMA. Mech Mater 137:103095. https://doi.org/10.1016/j.mechmat.2019.103095

  21. Shirazi HA, Mirmohammadi SA, Shaali M, Asnafi A, Ayatollahi MR (2017) A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis. Polym Test 59:328–335. https://doi.org/10.1016/j.polymertesting.2017.01.031

    Article  Google Scholar 

  22. Gibson RF (2014) A review of recent research on nanoindentation of polymer composites and their constituents. Compos Sci Technol 105:51–65. https://doi.org/10.1016/j.compscitech.2014.09.016

    Article  Google Scholar 

  23. Alisafaei F, Han C-S, Lakhera N (2014) Characterization of indentation size effects in epoxy. Polym Test 40:70–78. https://doi.org/10.1016/j.polymertesting.2014.08.012

    Article  Google Scholar 

  24. Kermouche G, Loubet JL, Bergheau JM (2007) Cone indentation of time-dependent materials: the effects of the indentation strain rate. Mech Mater 39(1):24–38. https://doi.org/10.1016/j.mechmat.2006.02.005

    Article  Google Scholar 

  25. Kermouche G, Loubet JL, Ergheau JM, (2008) Extraction of stress-strain curves of elastic-viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mech Mater 40(4):271–283. https://doi.org/10.1016/j.mechmat.2007.08.003

  26. Ramezanzadehkoldeh M, Skallerud B (2017) Nanoindentation response of cortical bone: dependency of subsurface voids. Biomech Model Mechanobiol 16:1599–1612. https://doi.org/10.1007/s10237-017-0907-5

    Article  Google Scholar 

  27. Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, Wolfram U (2016) Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93:196–211. https://doi.org/10.1016/j.bone.2015.11.018

    Article  Google Scholar 

  28. Carnelli D, Lucchini R, Ponzoni M, Contro R, Vena P (2011) Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. J Biomech 44(10):1852–1858. https://doi.org/10.1016/j.jbiomech.2011.04.020

    Article  Google Scholar 

  29. Anand L, Ames NM (2006) On modeling the micro-indentation response of an amorphous polymer. Int J Plast 22(6):1123–1170. https://doi.org/10.1016/j.ijplas.2005.07.006

    Article  MATH  Google Scholar 

  30. Christensen RM (2013) Theory of Viscoelasticity, 2nd ed. Dover Civil and Mechanical Engineering. Dover Publications. ISBN 9780486318967

  31. Wineman AS, Rajagopal KR (2000) Mechanical response of polymers: an introduction. Mechanical response of polymers: an introduction. Cambridge University Press, Cambridge. ISBN 9780521644099

  32. Anand L, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers: Part i: Formulation. Int J Plast 25(8):1474–1494. https://doi.org/10.1016/j.ijplas.2008.11.004

    Article  MATH  Google Scholar 

  33. Ames NM, Srivastava V, Chester SA, Anand L (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part ii: applications. Int J Plast 25(8):1495–1539. https://doi.org/10.1016/j.ijplas.2008.11.005

    Article  MATH  Google Scholar 

  34. Gudimetla MR, Doghri I (2017) A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int J Plast 98:197–216. https://doi.org/10.1016/j.ijplas.2017.08.001

    Article  Google Scholar 

  35. Nguyen V-D, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192–216. https://doi.org/10.1016/j.ijsolstr.2016.06.008

    Article  Google Scholar 

  36. Krairi A, Doghri I, Schalnat J, Robert G, Van Paepegem W (2019) Thermo-mechanical coupling of a viscoelastic–viscoplastic model for thermoplastic polymers: thermodynamical derivation and experimental assessment. Int J Plast 115:154–177. https://doi.org/10.1016/j.ijplas.2018.11.016

    Article  Google Scholar 

  37. Abdel-Wahab AA, Ataya S, Silberschmidt VV (2017) Temperature-dependent mechanical behaviour of pmma: experimental analysis and modelling. Polym Test 58:86–95. https://doi.org/10.1016/j.polymertesting.2016.12.016

    Article  Google Scholar 

  38. Reis JML, Motta EP, da Costa Mattos HS (2015) Elasto-viscoplastic behaviour of a polyvinylidene fluoride pvdf in tension. Polym Test 46:9–13. https://doi.org/10.1016/j.polymertesting.2015.06.013

    Article  Google Scholar 

  39. Motta EP, Reis JML, da Costa Mattos HS (2018) Analysis of the cyclic tensile behaviour of an elasto-viscoplastic polyvinylidene fluoride (PVDF). Polym Test 67:503–512. https://doi.org/10.1016/j.polymertesting.2018.03.012

    Article  Google Scholar 

  40. Laiarinandrasana L, Besson J, Lafarge M, Hochstetter G (2009) Temperature dependent mechanical behaviour of PVDF: Experiments and numerical modelling. Int J Plast 25(7):1301–1324. https://doi.org/10.1016/j.ijplas.2008.09.008

    Article  MATH  Google Scholar 

  41. Iio S, Yonezu A, Yamamura H, Chen X (2016) Deformation modeling of polyvinylidenedifluoride (PVDF) symmetrical microfiltration hollow-fiber (hf) membrane. J Membr Sci 497:421–429. https://doi.org/10.1016/j.memsci.2015.09.048

    Article  Google Scholar 

  42. Oliveira GL, Costa CA, Teixeira SCS, Costa MF (2014) The use of nano- and micro-instrumented indentation tests to evaluate viscoelastic behavior of poly(vinylidene fluoride) (PVDF). Polym Test 34:10–16. https://doi.org/10.1016/j.polymertesting.2013.12.006

    Article  Google Scholar 

  43. Perić D (1993) On a class of constitutive equations in viscoplasticity: formulation and computational issues. Int J Numer Methods Eng 36(8):1365–1393. https://doi.org/10.1002/nme.1620360807

    Article  MathSciNet  MATH  Google Scholar 

  44. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24(10):1642–1693. https://doi.org/10.1016/j.ijplas.2008.03.009

    Article  MATH  Google Scholar 

  45. Ferneda AB, da Costa RRC, Tita V, Proença SPB, de Carvalho J, de Moraes PB (2006) Compression tests of castor oil biopolymer. Mater Res 9:327–334. https://doi.org/10.1590/S1516-14392006000300013

    Article  Google Scholar 

  46. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36(1):1–6. https://doi.org/10.1115/1.3564580

    Article  MathSciNet  MATH  Google Scholar 

  47. Al-Rub Rashid K Abu, Tehrani Ardeshir H, Darabi Masoud K (2015) Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. Int J Damage Mech 24(2):198–244. https://doi.org/10.1177/1056789514527020

    Article  Google Scholar 

  48. Simo JC, Hughes TJR (2006) Computational Inelasticity. Interdisciplinary Applied Mathematics. Springer, New York, 2006. ISBN 9780387227634

  49. Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Met 74:537–562

    Google Scholar 

  50. Campbell JE, Thompson RP, Dean J, Clyne TW (2018) Experimental and computational issues for automated extraction of plasticity parameters from spherical indentation. Mech Mater 124:118–131. https://doi.org/10.1016/j.mechmat.2018.06.004

    Article  Google Scholar 

  51. Hockett JE, Sherby OD (1975) Large strain deformation of polycrystalline metals at low homologous temperatures. J Mech Phys Solids 23(2):87–98. https://doi.org/10.1016/0022-5096(75)90018-6

    Article  Google Scholar 

  52. Wriggers P, Zavarise G (1993) Application of augmented lagrangian techniques for non-linear constitutive laws in contact interfaces. Commun Numer Methods Eng 9(10):815–824. https://doi.org/10.1002/cnm.1640091005

    Article  MATH  Google Scholar 

  53. Zavarise G, De Lorenzis L (2012) An augmented lagrangian algorithm for contact mechanics based on linear regression. Int J Numer Methods Eng 91(8):825–842

    Article  MathSciNet  Google Scholar 

  54. MUMPS (1996) Multifrontal massively parallel sparse direct solver

  55. MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge. ISBN 9780521642989

  56. Cheng Yang-Tse, Ni Wangyang, Cheng Che-Min (2005) Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J Mater Res 20(11):3061–3071. https://doi.org/10.1557/JMR.2005.0389

    Article  Google Scholar 

  57. Yang-Tse C, Cheng C-M (2005) Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J Mater Res 20(4):1046–1053. https://doi.org/10.1557/JMR.2005.0141

    Article  Google Scholar 

  58. Zhang J, Michalenko MM, Kuhl E, Ovaert TC (2010) Characterization of indentation response and stiffness reduction of bone using a continuum damage model. J Mech Behav Biomed Mater 3(2):189–202. https://doi.org/10.1016/j.jmbbm.2009.08.001

    Article  Google Scholar 

  59. Schwiedrzik JJ, Zysset PK (2013) An anisotropic elastic-viscoplastic damage model for bone tissue. Biomech Model Mechanobiol 12(2):201–13. https://doi.org/10.1007/s10237-012-0392-9

    Article  Google Scholar 

  60. Veprek-Heijman MGJ, Veprek S (2015) The deformation of the substrate during indentation into superhard coatings: Bückle’s rule revised. Surface Coat Technol 284:206–214. https://doi.org/10.1016/j.surfcoat.2015.10.064

    Article  Google Scholar 

  61. Buljak V, Bocciarelli M, Maier G (2014) Mechanical characterization of anisotropic elasto-plastic materials by indentation curves only. Meccanica 49(7):1587–1599. https://doi.org/10.1007/s11012-014-9940-y

    Article  MATH  Google Scholar 

  62. Sakharova NA, Fernandes JV, Antunes JM, liveira MC (2009) Comparison between berkovich, vickers and conical indentation tests: a three-dimensional numerical simulation study. Int J Solids Struct 46(5):1095–1104. https://doi.org/10.1016/j.ijsolstr.2008.10.032

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Program of Post-Doctoral Research (PNPD) under code CAPES-PNPD 31001017030D4, and the National Council for Scientific and Technological Development (CNPq) Grants 304773/2017-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan O’Connor.

Ethics declarations

Conflict of interest

The authors declare no conflict of financial interest in the work presented as well as any kind of involvements that might raise the question of bias.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, J., Santos, B.B.d., Borges, L. et al. Computational modeling of viscoplastic polymeric material response during micro-indentation tests. J Braz. Soc. Mech. Sci. Eng. 42, 438 (2020). https://doi.org/10.1007/s40430-020-02511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02511-2

Keywords

Navigation