Skip to main content
Log in

Response Surface Methodology Optimization of Microwave-Assisted Polysaccharide Extraction from Algerian Jujube (Zizyphus lotus L.) Pulp and Peel

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The active ingredient recovery from the vegetable is a very attractive research field for the development of a sustainable economy; to revalue the jujube fruit (Zizyphus lotus) polysaccharide (ZLPS), an optimized green microwave-assisted method was used for the recovery and enrichment of the antioxidants present in a distilled water extract.

Methods

A series of 17 experiments including microwave power, irradiation time, and liquid-to-solid ratio independent parameters was designed by the response surface methodology to optimize the recovery of the polysaccharide extract.

Results

The optimal conditions were as follows: 600 W, 40 min, and 26.69 mL/g. Under these conditions, the experimental extraction yield was 13.98 ± 1.55% which is very close with the predicted value (14.08%), and this demonstrated the validation of the extraction model proposed. The polysaccharide extract exhibited a significant scavenging activity against ABTS.+ (70.45%), DPPH*.(66.02%), and FRAP (A = 0.63) with a very important anti-inflammatory activity using a protein denaturation method that showed a maximum inhibition of 95.33% at 200 μg/mL. Additionally, the membrane stabilization method showed a significant action and protection of human red blood cells (85.76%) in hypotonic-induced lysis solution and 86.45% in heat-induced lysis solution.

Conclusion

This study demonstrated the possibility of exploiting the microwave process to obtain extracts remarkably enriched with invaluable antioxidants from the jujube matrix. The operation time is short, and the antioxidant and anti-inflammatory activities of the distilled water extract were preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hammi KM, Jdey A, Abdelly C, Majdoub H, Ksouri R. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chem. 2015;184:80–9. https://doi.org/10.1016/j.foodchem.2015.03.047.

    Article  CAS  PubMed  Google Scholar 

  2. Abdeddaim M, et al. Biochemical characterization and nutritional properties of Zizyphus lotus l. fruits in aures region, northeastern of Algeria. Ann Food Sci Technol. 2014;15(1):75–81.

    CAS  Google Scholar 

  3. Samavati V, Manoochehrizade A. Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. Int J Biol Macromol. 2013;60:427–36. https://doi.org/10.1016/j.ijbiomac.2013.04.050.

    Article  CAS  PubMed  Google Scholar 

  4. Abbou A, Kadri N, Debbache N, Dairi S, Remini H, Dahmoune F, et al. Effect of precipitation solvent on some biological activities of polysaccharides from Pinus halepensis Mill. seeds. Int J Biol Macromol. 2019;141:663–70. https://doi.org/10.1016/j.ijbiomac.2019.08.266.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Z, Li J, Wu X, Dai H, Gao X, Liu M, et al. Structures and immunological activities of two pectic polysaccharides from the fruits of Ziziphus jujuba Mill. cv. jinsixiaozao Hort. Food Res Int. 2006;39(8):917–23. https://doi.org/10.1016/j.foodres.2006.05.006.

    Article  CAS  Google Scholar 

  6. Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Med Cell Longev. 2016;2016:1–13. https://doi.org/10.1155/2016/5692852.

    Article  CAS  Google Scholar 

  7. Hammi KM, et al. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: composition and antioxidant activity. Food Chem. 2016;212:476–84. https://doi.org/10.1016/j.foodchem.2016.06.004.

    Article  CAS  Google Scholar 

  8. Thirugnanasambandham K, Sivakumar V, Maran JP. Microwave-assisted extraction of polysaccharides from mulberry leaves. Int J Biol Macromol. 2015;72:1–5. https://doi.org/10.1016/j.ijbiomac.2014.07.031.

    Article  CAS  PubMed  Google Scholar 

  9. Dahmoune F, Nayak B, Moussi K, Remini H, Madani K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015;166:585–95. https://doi.org/10.1016/j.foodchem.2014.06.066.

    Article  CAS  PubMed  Google Scholar 

  10. Dahmoune F, Spigno G, Moussi K, Remini H, Cherbal A, Madani K. Pistacia lentiscus leaves as a source of phenolic compounds: microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind Crop Prod. 2014;61:31–40. https://doi.org/10.1016/j.indcrop.2014.06.035.

    Article  CAS  Google Scholar 

  11. Abbou A, Kadri N, Dahmoune F, Chergui A, Remini H, Berkani F, et al. Optimising functional properties and chemical composition of Pinus halepensis Mill. Seeds protein concentrates. Food Hydrocoll. 2020;100:105416. https://doi.org/10.1016/j.foodhyd.2019.105416.

    Article  CAS  Google Scholar 

  12. Yuan Y, Liu Y, Liu M, Chen Q, Jiao Y, Liu Y, et al. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa. Saudi Pharm J. 2017;25(4):523–30. https://doi.org/10.1016/j.jsps.2017.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rostami H, Gharibzahedi SMT. Microwave-assisted extraction of jujube polysaccharide: optimization, purification and functional characterization. Carbohydr Polym. 2016;143:100–7. https://doi.org/10.1016/j.carbpol.2016.01.075.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Xie M, Li W, Zhang H, Nie S, Wang Y, et al. An effective method for deproteinization of bioactive polysaccharides extracted from lingzhi (Ganoderma atrum). Food Sci Biotechnol. 2012;21(1):191–8. https://doi.org/10.1007/s10068-012-0024-2.

    Article  CAS  Google Scholar 

  15. Singh, B., R. Kumar, and N. Ahuja, Optimizing drug delivery systems using systematic" design of experiments." Part I: fundamental aspects. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2005. 22(1). doi: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i1.20

  16. Dahmoune, F., et al., Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. 2015. 77: p. 251–261. https://doi.org/10.1016/j.indcrop.2015.08.062

  17. Dubois M, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6. https://doi.org/10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  19. Achat S, Tomao V, Madani K, Chibane M, Elmaataoui M, Dangles O, et al. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason Sonochem. 2012;19(4):777–86. https://doi.org/10.1016/j.ultsonch.2011.12.006.

    Article  CAS  PubMed  Google Scholar 

  20. Long LH, Kwee DCT, Halliwell B. The antioxidant activities of seasonings used in Asian cooking. Powerful antioxidant activity of dark soy sauce revealed using the ABTS assay. Free Radic Res. 2000;32(2):181–6. https://doi.org/10.1080/10715760000300181.

    Article  CAS  PubMed  Google Scholar 

  21. Karthik, I., Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. 2013.

  22. Rani AA, Punitha SMJ, Rema M. Anti-inflammatory activity of flower extract of Cassia auriculata –an in-vitro study. Int Res J Pharm Appl Sci. 2014;4:57–60.

    Google Scholar 

  23. Abd-Alrahman SH, et al. Phytochemical screening and antimicrobial activity of EthOH/water Ziziphus jujuba seeds extracts. J Pure Appl Microbiol. 2013;7:823–8.

    Google Scholar 

  24. Umapathy E, et al. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J Med Plant Res. 2010;4(9):789–95. https://doi.org/10.5897/JMPR10.056.

    Article  Google Scholar 

  25. Oyedapo O, et al. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Int J Plant Physiol Biochem. 2010;2(4):46–51. https://doi.org/10.5897/IJPPB.

    Article  Google Scholar 

  26. Zhou C, Yu X, Ma H, Liu S, Qin X, Yagoub AEGA, et al. Examining of athermal effects in microwave-induced glucose/glycine reaction and degradation of polysaccharide from Porphyra yezoensis. Carbohydr Polym. 2013;97(1):38–44. https://doi.org/10.1016/j.carbpol.2013.04.033.

    Article  CAS  PubMed  Google Scholar 

  27. Adeli M, Samavati V. Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int J Biol Macromol. 2015;72:580–7. https://doi.org/10.1016/j.ijbiomac.2014.08.047.

    Article  CAS  PubMed  Google Scholar 

  28. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, et al. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol. 2009;70(1):63–70. https://doi.org/10.1016/j.seppur.2009.08.012.

    Article  CAS  Google Scholar 

  29. Liu J, Liu H, Ma L, Wang S, Gao J, Li Y, et al. A Chinese jujube (Ziziphus jujuba Mill.) fruit-expressed sequence tag (EST) library: annotation and EST-SSR characterization. Sci Hortic. 2014;165:99–105. https://doi.org/10.1016/j.scienta.2013.10.033.

    Article  CAS  Google Scholar 

  30. Chouaibi, M., Mahfoudhi N., Rezig L., Donsi F., Ferrari G., Hamdi S., A comparative study on physicochemical, rheological and surface tension properties of Tunisian jujube (Zizyphus lotus L.) seed and vegetable oils. Int J Food Eng, 2012. 8(2). https://doi.org/10.1515/1556-3758.2759

  31. Chouaibi M, Rezig L, Ben daoued K, Mahfoudhi N, Bouhafa H, Hamdi S. Extraction of polysaccharide from zizyphus lotus fruits. Int J Food Eng. 2012;8(3). https://doi.org/10.1515/1556-3758.2756.

  32. Kamnev AA, Colina M, Rodriguez J, Ptitchkina NM, Ignatov VV. Comparative spectroscopic characterization of different pectins and their sources. Food Hydrocoll. 1998;12(3):263–71. https://doi.org/10.1016/S0268-005X(98)00014-9.

    Article  Google Scholar 

  33. Coimbra MA, Gonçalves F, Barros AS, Delgadillo I. Fourier transform infrared spectroscopy and chemometric analysis of white wine polysaccharide extracts. J Agric Food Chem. 2002;50(12):3405–11. https://doi.org/10.1021/jf020074p.

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y-D, Wang Z-H, Ye Q-S. Composition analysis and anti-proliferation activity of polysaccharides from Dendrobium chrysotoxum. Int J Biol Macromol. 2013;62:291–5. https://doi.org/10.1016/j.ijbiomac.2013.08.046.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Cai F, Yu Z, Zhang L, Li X, Yang Y, et al. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity. Food Chem. 2016;194:650–8. https://doi.org/10.1016/j.foodchem.2015.08.061.

    Article  CAS  PubMed  Google Scholar 

  36. Wu Z, Li H, Tu D, Yang Y, Zhan Y. Extraction optimization, preliminary characterization, and in vitro antioxidant activities of crude polysaccharides from finger citron. Ind Crop Prod. 2013;44:145–51. https://doi.org/10.1016/j.indcrop.2012.11.008.

    Article  CAS  Google Scholar 

  37. Li J, Liu Y, Fan L, Ai L, Shan L. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv. Jinsixiaozao. Carbohydr Polym. 2011;84(1):390–4. https://doi.org/10.1016/j.carbpol.2010.11.051.

    Article  CAS  Google Scholar 

  38. Lin T, Liu Y, Lai C, Yang T, Xie J, Zhang Y. The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds. Ind Crop Prod. 2018;125:150–9. https://doi.org/10.1016/j.indcrop.2018.08.078.

    Article  CAS  Google Scholar 

  39. Ferreira IC, et al. Free-radical scavenging capacity and reducing power of wild edible mushrooms from Northeast Portugal: individual cap and stipe activity. Food Chem. 2007;100(4):1511–6. https://doi.org/10.1016/j.foodchem.2005.11.043.

    Article  CAS  Google Scholar 

  40. Ananthi S, et al. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem Toxicol. 2010;48(1):187–92. https://doi.org/10.1016/j.fct.2009.09.036.

    Article  CAS  PubMed  Google Scholar 

  41. Oyedapo O, Famurewa A. Antiprotease and membrane stabilizing activities of extracts of Fagara zanthoxyloides, Olax subscorpioides and Tetrapleura tetraptera. Int J Pharmacogn. 1995;33(1):65–9. https://doi.org/10.3109/13880209509088150.

    Article  Google Scholar 

  42. Sonibare MA, Onda EE, Ajayi AM, Umukoro S. In vitro antioxidant and membrane stabilization activities of the fruit extract and fractions of Tetrapleura tetraptera (Schumach & Thonn.) Taub. J Pharm Biores. 2015;12(2):95–105. https://doi.org/10.4314/jpb.v12i2.3.

    Article  Google Scholar 

  43. Mizushima Y, Kobayashi M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J Pharm Pharmacol. 1968;20(3):169–73. https://doi.org/10.1111/j.2042-7158.1968.tb09718.x.

    Article  CAS  PubMed  Google Scholar 

  44. Mzoughi Z, Abdelhamid A, Rihouey C, le Cerf D, Bouraoui A, Majdoub H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr Polym. 2018;185:127–37. https://doi.org/10.1016/j.carbpol.2018.01.022.

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Cui SW, Tang J, Wang Q, Gu X. Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds. Carbohydr Polym. 2007;70(4):437–43. https://doi.org/10.1016/j.carbpol.2007.05.010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Dahmoune.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkani, F., Dahmoune, F., Achat, S. et al. Response Surface Methodology Optimization of Microwave-Assisted Polysaccharide Extraction from Algerian Jujube (Zizyphus lotus L.) Pulp and Peel. J Pharm Innov 16, 630–642 (2021). https://doi.org/10.1007/s12247-020-09475-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09475-9

Keywords

Navigation