Skip to main content

Advertisement

Log in

Torque Ripple Analysis of Synchronous Reluctance Motor with Different Rotor Topologies for Application with Dimensional Constraint

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Synchronous reluctance machine (SynRM) is reemerging as a thermally robust and inexpensive actuator solution mainly due to the lack of permanent magnet. Added to that, the possibilities of having different rotor topologies make it very versatile where further optimization is possible depending on the objective, be it cost, ease of fabrication, power output, or torque quality. In an application where the outer dimension of the motor is strictly limited, this paper compares quantitatively and qualitatively the torque ripple of three SynRM machines of the same stator dimension equipped with different rotor topologies: segmented, tooth and flux barrier. Using an experimentally validated FE model, the torque ripple and the ripple’s harmonic content are compared at maximum load (stator current, IS = 50 A) and load angle (β = π/4). The machine adopting the flux-barrier rotor was shown to have the best torque quality (41% ripple), followed by tooth rotor (78% ripple) and finally segmented rotor (105% ripple). The harmonic contents are also presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang Y, Bianchi N (2018) Analysis of self-excited pm-assisted reluctance generators. IEEE Trans Energy Conv 33:877–885

    Article  Google Scholar 

  2. Rasid MAH (2018) Preliminary thermal evaluation of actuator for steer-by-wire vehicle. IEEE Trans Veh Technol 67:11468–11474

    Article  Google Scholar 

  3. Rasid MAH, Benkara K, Lanfranchi V (2017) Fast electromechanical performance evaluation tool for synchronous reluctance machine. Int J Precis Eng Manuf 18:1567–1573

    Article  Google Scholar 

  4. Meksi O, Rasid MAH, Ospina A, Lanfranchi V (2016) Determination of thermal contact resistances for small TENV electrical machine. Sensors Transducers Tor 198(3):44–54

    Google Scholar 

  5. Mahmoud H, Bianchi N (2015) Eccentricity in synchronous reluctance motors-part i: analytical and finite-element models. IEEE Trans Energy Convers 30:745–753

    Article  Google Scholar 

  6. Lamghari-Jamal MI, Fouladgar J, Zaim EH, Trichet D (2006) A magnetothermal study of a high-speed synchronous reluctance machine. IEEE Trans Magn 42(4):1271–1274

    Article  Google Scholar 

  7. Fukao T, Chiba A, Matsui M (1989) Test results on a super-high-speed amorphousiron reluctance motor. IEEE Trans Ind Appl 25(1):119–125

    Article  Google Scholar 

  8. Laporte B, Chabane M, Sargos FM (1994) Application of a boundary integral method to the optimization of tooth rotor machines. IEEE Trans Energy Convers 9(3):604–612

    Article  Google Scholar 

  9. El Hadi Zaim M (2009) High-speed tooth rotor synchronous reluctance machine design and optimization. Magn IEEE Trans 45:1796–1799

    Article  Google Scholar 

  10. Fukao T, Chiba A, Matsui M (1989) Test results on a super high-speed amorphous-iron reluctance motor. IEEE Trans IA-25(1):119–125

    Google Scholar 

  11. Hassan SA, Osheiba AMF, Mhamadein AL (1980) Performance of different types of reluctance motors: experimental comparative study. Electr Mach Elerrromech 5:225–236

    Google Scholar 

  12. Lawrenson PJ, Agu LA (1963) A new unexcited synchronous machine. Electr Eng Proc Instit 110:1275–1275

    Article  Google Scholar 

  13. Lawrenson PJ, Gupta SK (1967) Developments in the performance and theory of segmental-rotor reluctance motors. Electr Eng Proc Instit 114:645–653

    Article  Google Scholar 

  14. C Doc (2010) Ph.D. Thesis

  15. Mecrow B, El-Kharashi E, Finch J, Jack A (2003) Segmental rotor switched reluctance motors with single-tooth windings. IEE Proc Electr Power Appl 150:591–599

    Article  Google Scholar 

  16. Widmer J, Mecrow B (2013) Optimized segmental rotor switched reluctance machines with a greater number of rotor segments than stator slots. IEEE Trans Ind Appl 49:1491–1498

    Article  Google Scholar 

  17. Miller TJE, Staton DA, Wood SE (1991) Optimisation of the synchronous reluctance motor geometry. IEE Conference on Electrical Machines and Drives

  18. Niazi P, Toliyat HA, Cheong DH, Kim JC (2007) A low-cost and efficient permanent magnet-assisted synchronous reluctance motor drive. Ind Appl 43:542–550

    Article  Google Scholar 

  19. Obata M, Morimoto S, Sanada M, Inoue Y (2014) Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity. Ind Appl 50:2427–2435

    Article  Google Scholar 

  20. Babetto C, Bacco G, Bianchi N (2018) Synchronous reluctance machine optimization for high speed applications. IEEE Trans Energy Convers 33(3):1266–1273

    Article  Google Scholar 

  21. Matsuo T, Lipo T (1994) Rotor design optimization of synchronous reluctance machine. IEEE Trans Energy Convers 9:359–365

    Article  Google Scholar 

  22. Kim KC, Ahn JS, Won SH, Hong JP, Lee J (2007) A study on the optimal design of SynRM for the high torque and power factor. IEEE Trans Magn 43:2543–2545

    Article  Google Scholar 

  23. Bacco G, Bianchi N, Mahmoud H (2018) A nonlinear analytical model for the rapid prediction of the torque of synchronous reluctance machines. IEEE Trans Energy Convers 33(3):1539–1546

    Article  Google Scholar 

  24. Cruickshank AJO, Anderson AF, Menzies RW (1971) Theory and performance of reluctance motors with axially laminated anisotropic rotors. Electr Eng Proc Inst 118:887–894

    Article  Google Scholar 

  25. Chandrasekhara Rao S (1976) Dynamic performance of reluctance motors with magnetically anisotropic rotors. Power Appar Syst 95:1369–1376

    Article  Google Scholar 

  26. Chalmers BJ, Musaba L (1998) Design and fieldweakening performance of a synchronous reluctance motor with axially laminated rotor. Ind Appl 34:1035–1041

    Article  Google Scholar 

  27. Bianchi N, Bolognani S, Bon D, Dai MP (2008) Torque harmonic compensation in a synchronous reluctance motor. IEEE Trans Energy Convers 23(2):466–473

    Article  Google Scholar 

  28. Vagati A, Pastorelli M, Francheschini G, Petrache S (1998) Design of low-torque-ripple synchronous reluctance motors. IEEE Trans Ind Appl 34:758–765

    Article  Google Scholar 

  29. Chiba A, Nakamura F, Fukao T, Azizur Rahman M (1991) Inductances of cageless reluctancesynchronous machines having nonsinusoidal space distributions. IEEE Trans Ind Appl 27:44–51

    Article  Google Scholar 

  30. Bianchi N (2005) Electrical machine analysis using finite elements. CRC Press, Boca Raton

    Google Scholar 

  31. Fratta A, Troglia G, Vagati A, Villata F (1993) Evaluation of torque ripple in high performance synchronous reluctance machines Industry Applications Society Annual Meeting. 1:163–170

  32. Sanada M, Hiramoto K, Morimoto S, Takeda Y (2004) Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement. IEEE Trans Ind Appl 40:1076–1082

    Article  Google Scholar 

  33. Nashiki M, Satake A, Kawai Y, Yokochi T, Okuma S (1999) A new flux-barrier-type reluctance motor with a slit rotor. IEEE Trans Ind Appl 46:1199–1206

    Google Scholar 

  34. Sun J, Wang S, Kuang Z, Wu H (2012) Torque ripple comparison of short-pitched and fully-pitched winding switched reluctance machine Electrical Machines and Systems (ICEMS). 15th International Conference on. p 1–6

Download references

Acknowledgements

The financial support by Universiti Malaysia Pahang (UMP) under the RDU180315 and the Ministry of Higher Education Malaysia under the FRGS Grant FRGS/1/2018/TK03/UMP/02/27, as well as facilities from both Universiti Malaysia Pahang and Université de Technologie de Compiègne are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. H. Rasid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasid, M.A.H., Lanfranchi, V., Ospina, A. et al. Torque Ripple Analysis of Synchronous Reluctance Motor with Different Rotor Topologies for Application with Dimensional Constraint. J. Electr. Eng. Technol. 15, 2167–2177 (2020). https://doi.org/10.1007/s42835-020-00493-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-020-00493-8

Keywords

Navigation