Skip to main content

Advertisement

Log in

Low-light and its effects on crop yield: Genetic and genomic implications

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Shade indicates decreased sunlight. The agricultural importance of shade imparts to its deteriorative effect of crop yield. Rice is not only the most widely used food crop by a third of the population of the world, but it has also been established as the model monocot plant for study. This article describes several important aspects of shade on rice yield with appropriate examples in other plants such as Arabidopsis. To start with, how different environmental or growth conditions create shade is explained. The morphological, physiological and biochemical characteristics due to different kinds of shade are selectively explained. The molecular characteristics of rice under shade from genetic, genomic and epigenetic studied are discussed. Signalling components for the manifestation of shade tolerance responses and their interconnection with other signalling networks and hormone pathway components are from recent reports. A list of genes, micro-RNAs and metabolites that are involved in shade responses is presented. Lastly, implications for sustainable yield under shade is discussed. This review will be useful not only for cutting-edge information on shade tolerance but will also build framework for upcoming new rice varieties with sustainable yield under shade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Achard P, Vriezen WH, Van Der Straeten D and Harberd NP 2003 Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15 2816–2825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Achkar NP, Cho SK, Poulsen C, Arce AL, Re DA, Giudicatti AJ, Karayekov E, Ryu MY, Choi SW, Harholt J, Casal JJ, Yang SW and Manavella PA 2018 A quick HYL1-dependent reactivation of microRNA production is required for a proper developmental response after extended periods of light deprivation. Dev. Cell 46 236–247

    CAS  PubMed  Google Scholar 

  • Adriani DE, Dingkuhn M, Dardou A, Adam H, Luquet D and Lafarge T 2016 Rice panicle plasticity in Near Isogenic Lines carrying a QTL for larger panicle is genotype and environment dependent. Rice 9 28

    PubMed  PubMed Central  Google Scholar 

  • Aguilar-Martínez J A, Poza-Carrión C and Cubas P 2007 Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19 458–472

    PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM and Sharrock RA 1997 A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9 1317–1326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai MY, Fan M, Oh E and Wang ZY 2012 A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signalling pathways in Arabidopsis. Plant Cell 24 4917–4929

    PubMed  PubMed Central  Google Scholar 

  • Ballaré CL and Scopel AL 1997 Phytochrome signalling in plant canopies: testing its population‐level implications with photoreceptor mutants of Arabidopsis. Funct. Ecol. 11 441–450

    Google Scholar 

  • Bardhan S, Panigrahi KCS and Panigrahy M 2019 Mechanisms involved in response to shade in rice: a review; in Proceedings of. ICPDB 2017. Cambridge Scholars Publishing. (Cambridge Press) ISBN13: 9781527518094, Review Paper 2 23–36

  • Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adám E, Fejes E, Schäfer E and Nagy F 2004 Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signalling in Arabidopsis. Plant Cell 16 1433–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boccalandro HE, González CV, Wunderlin DA and Silva MF 2011 Melatonin levels, determined by LC‐ESI‐MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J. Pineal Res. 51 226–232

    CAS  PubMed  Google Scholar 

  • Briggs WR and Christie JM 2002 Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7 204–210

    CAS  PubMed  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G and Ruberti I 2007 Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Gene. Dev. 21 1863–1868

    CAS  PubMed  Google Scholar 

  • Carriedo LG, Maloof JN and Brady SM 2016 Molecular control of crop shade avoidance. Curr. Opin. Plant. Biol. 30 151–158

    CAS  PubMed  Google Scholar 

  • Casal JJ 2012 Shade avoidance. Arabidopsis Book. 10 e0157.

  • Cerdán PD and Chory J 2003 Regulation of flowering time by light quality. Nature 423 881–885

    PubMed  Google Scholar 

  • Cerdán PD, Yanovsky MJ, Reymundo FC, Nagatani A, Staneloni RJ, Whitelam GC and Casal JJ 1999 Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana. Plant J. 18 499–507

    PubMed  Google Scholar 

  • Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J and Kazan K 2012 MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol. 160 541–555

    PubMed  PubMed Central  Google Scholar 

  • Chen C, Xiao Y, Li X and Ni M 2012 Light-regulated stomatal aperture in Arabidopsis. Mol. Plant. 5 566–572

    PubMed  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F and Yu D 2013 WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signalling in Arabidopsis. PNAS USA 110 E1963–E1971

    CAS  PubMed  Google Scholar 

  • Cifuentes‐Esquivel N, Bou‐Torrent J, Galstyan A, Gallemí M, Sessa G, Salla Martret M, Roig-Villanova I, Ruberti I and Martínez-García JF 2013 The b HLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings. Plant J. 75 989–1002

    CAS  PubMed  Google Scholar 

  • Ciolfi A, Sessa G, Sassi M, Possenti M, Salvucci S, Carabelli M, Morelli G and Ruberti I 2013 Dynamics of the shade-avoidance response in Arabidopsis. Plant Physiol. 163 331–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole B, Kay SA and Chory J 2011 Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. Plant J. 65 991–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crocco CD, Holm M, Yanovsky MJ and Botto JF 2010 AtBBX21 and COP1 genetically interact in the regulation of shade avoidance. Plant J. 64 551–562

    CAS  PubMed  Google Scholar 

  • Crocco CD, Locascio A, Escudero CM, Alabadí D, Blázquez MA and Botto JF 2015 The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat. Commun. 66 202

    Google Scholar 

  • Das D, Kate RSO, Laurentius ACJV, Pierik R and Sasidharan R 2016 Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiol. 172 718–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Lucas M, Daviere JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E and Prat S 2008 A molecular framework for light and gibberellin control of cell elongation. Nature 451 480–484

    PubMed  Google Scholar 

  • de Wit M, Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ, Voesenek LACJ and Pierik R 2013 Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant. J. 75 90–103

    PubMed  Google Scholar 

  • Devlin PF, Robson PR, Patel SR, Goosey L, Sharrock RA and Whitelam GC 1999 Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119 909–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin PF, Yanovsky MJ and Kay SA 2003 A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133 1617–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djakovic-Petrovic T, Wit M.D, Voesenek LACJ and Pierik R 2007 DELLA protein function in growth responses to canopy signals. Plant J. 51 117–126

    CAS  PubMed  Google Scholar 

  • Domagalska MA, Leyser O 2011. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12 211–221

    CAS  PubMed  Google Scholar 

  • Fabre D, Adriani DE, Dingkuhn M, Ishimaru T, Punzalan B, Lafarge T, Clément-Vidal A and Luquet D 2016 The qTSN4 effect on flag leaf size, photosynthesis and panicle size, benefits to plant grain production in rice, depending on light availability. Front. Plant Sci. 7 623

    PubMed  PubMed Central  Google Scholar 

  • Faigón-Soverna A, Harmon FG, Leonardo S, Karayekov E, Staneloni RJ, Gassmann W, Más P, Casal JJ, Kay SA and Yanovsky MJ 2006 A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18 2919–2928

    PubMed  PubMed Central  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM and Deng XW 2008 Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451 475–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH and Casal JJ 2010 Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 152 1914–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin K 2008 Shade Avoidance. Tansley Review. New Phytol. 179 930–944

    CAS  PubMed  Google Scholar 

  • Franklin KA and Whitelam GC 2007 Phytochrome A function in red light sensing. Plant Signal. Behav. 2 383–385

    PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D and Blázquez MA 2012 Molecular mechanism for the interaction between gibberellin and brassinosteroid signalling pathways in Arabidopsis. PNAS USA 109 13446–13451

    PubMed  Google Scholar 

  • Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M and Chory J 2001 BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Gene. Dev. 15 1985–1997

    CAS  PubMed  Google Scholar 

  • Gommers CM, Visser E, St.Onge KR, Voesenek LA and Pierik R 2012 Shade tolerance: when growing tall is not an option. Trends Plant Sci. 18 65–71

    PubMed  Google Scholar 

  • González-Grandío E, Poza-Carrión C, Sorzano COS and Cubas P 2013 BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25 834–850

    PubMed  PubMed Central  Google Scholar 

  • Halliday KJ, Salter MG, Thingnaes E and Whitelam GC 2003 Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33 875–885

    CAS  PubMed  Google Scholar 

  • Hennig L, Buche C and Schäfer E 2000 Degradation of phytochrome A and the high irradiance response in Arabidopsis: A kinetic analysis. Plant Cell Environ. 23 727–734

    CAS  Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA and Koshioka M 2005 The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol. 138 1106–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hornitschek P, Kohnen M V, Lorrain S, Rougemont J, Ljung K, López‐Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I and Fankhauser C 2012 Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71 699–711

    CAS  PubMed  Google Scholar 

  • Hornitschek P, Lorrain S, Zoete V, Michielin O and Fankhauser C 2009 Inhibition of the shade avoidance response by formation of non‐DNA binding bHLH heterodimers. EMBO J. 28 3893–3902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iñigo S, Alvarez MJ, Strasser B, Califano A and Cerdán PD 2012 PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant. J. 69 601–612

    PubMed  Google Scholar 

  • Jiménez-Gómez JM, Wallace AD and Maloof JN 2010 Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. PLoS Genet. 6 e1001100

    PubMed  PubMed Central  Google Scholar 

  • Johnson SE, Sollenberger LE and Bennett JM 1994 Yield and reserve status of Rhizoma peanut growing under shade. Crop Sci. 34 757–761

    Google Scholar 

  • Kang Y, Khan S and Ma X 2009 Climate change impacts on crop yield, crop water productivity and food security–A review. Prog. Nat. Sci. 19 1665–1674

    Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J and Ballaré CL 2011 Cryptochrome 1 and phytochrome B control shade‐avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67 195–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrick RE and Kronenberg GHM (eds.) 1994 Photomorphogenesis in Plants. Dordrecht. Kluwer Academic Publishers.

    Google Scholar 

  • Keuskamp DH, Sasidharan R, Vos I, Peeters AJ, Voesenek LA and Pierik R 2011 Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J. 67 208–217

    CAS  PubMed  Google Scholar 

  • Kevei E, Schafer E, Nagy F 2007 Light-regulated nucleo-cytoplasmic partitioning of phytochromes. J. Exp. Bot. 58 3113–3124

    CAS  PubMed  Google Scholar 

  • Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang YS and Quail PH 2006 Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal de-etiolation. Plant Cell 18 2157–2171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G T, Tsukaya H and Uchimiya H 1998 The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Gene. Dev. 12 2381–2391

    CAS  PubMed  Google Scholar 

  • Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I and Fankhauser C 2016 Neighbour detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28 2889–2904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H and Nagatani A 2010 Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol. 153 1608–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Yadav S, Patra D, Singh S, Sarkar AK and Panigrahi KCS 2019 Uncovering the molecular signature underlying the light intensity-dependent root development in Arabidopsis thaliana. BMC Genom. 20 596

    Google Scholar 

  • Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM et al. 2008 The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating PhyB levels. Plant Cell 20 337–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leone M, Keller MM, Cerrudo I and Ballaré C L 2014 To grow or defend? Low red: far‐red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol. 204 355–367

    CAS  PubMed  Google Scholar 

  • Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y and Gregory BD 2012 Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24 4346–4359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, McGraw RL, George MF and Garrett HE 1998 Shade effects on forage crops with potential in temperate agroforestry practices. Agrofor. Syst. 44 109–119

    Google Scholar 

  • Liu L, Wang L, Deng F, Huang Y, Liu DY, Ren WJ and Yang WY 2012 Osmotic regulation substance contents and activities of protective enzymes in leaves of different hybrid rice combinations as affected by shading. Chin. J. Rice Sci. 26 569–575

    CAS  Google Scholar 

  • Liu QH, Xiu WU, Chen BC and Jie GAO 2014 Effects of low light on agronomic and physiological characteristics of rice including grain yield and quality. Rice Sci. 21 243–251

    Google Scholar 

  • López-Juez E, Kobayashi M, Sakurai A, Kamiya Y and Kendrick RE 1995 Phytochrome, gibberellins, and hypocotyl growth. Plant Physiol. 107 131–140

    PubMed  PubMed Central  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC and Fankhauser C 2008 Phytochrome‐mediated inhibition of shade avoidance involves degradation of growth‐promoting bHLH transcription factors. Plant J. 53 312–323

    CAS  PubMed  Google Scholar 

  • Louda SM and Rodman JE 1996 Insect herbivory as a major factor in the shade distribution of a native Crucifer (Cardamine Cordifolia A. Gray, Bittercress). J. Ecol. 84 229–237

    Google Scholar 

  • Luccioni LG, Oliverio KA, Yanovsky MJ, Boccalandro HE and Casal JJ 2002 Brassinosteroid mutants uncover fine tuning of phytochrome signalling. Plant Physiol. 128 173–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makino S, Matsushika A, Kojima M, Yamashino T and Mizuno T 2002 The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol. 43 58–69

    CAS  PubMed  Google Scholar 

  • Mazzella MA, Cerdán PD, Staneloni RJ and Casal JJ 2001 Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128 2291–2299

    CAS  PubMed  Google Scholar 

  • McNellis TW, von Arnim AG and Deng XW 1994 Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6 1391–1400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli G and Ruberti I 2000 Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol. 122 621–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JE, Tao Y, Chory J, and Ballaré CL 2009 Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. PNAS USA 106 4935–4940

    CAS  PubMed  Google Scholar 

  • Murchie EH, Hubbart S, Peng S and Horton P 2005 Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J. Exp. Bot. 56 411–460

    Google Scholar 

  • Nagatani A, Chory J and Furuya M 1991 Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol. 32 1119–1122

    CAS  Google Scholar 

  • Novák J, Černý M, Pavlů J, Zemánková J, Skalák J, Plačková L and Brzobohatý B 2015 Roles of proteome dynamics and cytokinin signalling in root to hypocotyl ratio changes induced by shading roots of Arabidopsis seedlings. Plant Cell Physiol. 56 1006–1018

    PubMed  Google Scholar 

  • Nozue K, Tat AV, Devisetty UK, Robinson M, Mumbach MR, Ichihashi Y, Lekkala S and Maloof JN 2015 Shade Avoidance components and pathways in adult plants revealed by phenotypic profiling. PLOS Genet. 11 e1004953

    PubMed  PubMed Central  Google Scholar 

  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM and Kay SA 2011 The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475 398–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacín M, Semmoloni M, Legris M, Finlayson SA and Casal JJ 2016 Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. New Phytol. 211 967–979

    PubMed  Google Scholar 

  • Panigrahy M, Ranga A, Das J and Panigrahi KCS 2019 Shade tolerance in Swarnaprabha rice is associated with higher rate of panicle emergence and positively regulated by genes of ethylene and cytokinin pathway. Sci. Rep. 9 6817–6834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panigrahy M, Sarla N and Panigrahi KCS 2018 Phenotypic, physiological and biochemical characterization of rice introgression lines and mutants under prolonged shade condition. Res. J. Life. Sci. Bioinform. Pharm. Chem. Sci. 4 115–131

    Google Scholar 

  • Pedmale UV, Huang SSC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridevi P, Nito K, Nery JR, Ecker JR and Chory J 2016 Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164 233–245

    CAS  PubMed  Google Scholar 

  • Pierik R, Cuppens ML, Voesenek LA and Visser EJ 2004 Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol. 136 2928–2936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M and Voesenek LA 2009 Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant. Physiol. 149 1701–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Millenaar FF, Peeters AJM and Voesenek LACJ 2005 New perspectives in flooding research: the use of shade avoidance and Arabidopsis thaliana. Ann. Bot. 96 533–540

    PubMed  PubMed Central  Google Scholar 

  • Pierik R, Visser EJ, de Kroon H and Voesenek LA 2003 Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ. 26 1229–1234

    CAS  Google Scholar 

  • Procko C, Burko Y, Jaillais Y, Ljung K, Long JA and Chory J 2016 The epidermis coordinates auxin-induced stem growth in response to shade. Gene. Dev. 30 1529–1541

    CAS  PubMed  Google Scholar 

  • Reed JW, Foster KR, Morgan PW and Chory J 1996 Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol. 112 337–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren WJ, Yang WY, Fan GQ, Zhu XM, Ma ZH and Xu JW 2003 Effect of low-light on dry matter accumulation and yield of rice. J. Sichuan. Agric. Univ. 2 9 292–296

    Google Scholar 

  • Restrepo H and Garcés G 2013 Evaluation of low light intensity at three phenological stages in the agronomic and physiological responses of two rice (Oryza sativa L.) cultivars. Agron. Colomb. 31 195–200

    Google Scholar 

  • Romero-Montepaone S, Poodts S, Fischbach P, Sellaro R, Zurbriggen MD and Casal JJ 2020 Shade avoidance responses become more aggressive in warm environments. Plant Cell Environ. 1 12

    Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI and Ulm R 2011 Perception of UV-B by the Arabidopsis UVR8 protein. Science 332 103–106

    CAS  PubMed  Google Scholar 

  • Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, Brearley C and Turner J G 2010 Jasmonate and phytochrome A signalling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22 1143–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roig‐Villanova I, Bou‐Torrent J, Galstyan A, Carretero‐Paulet L, Portolés S, Rodríguez‐Concepción M and Martínez‐García JF 2007 Interaction of shade avoidance and auxin responses: a role for two novel a typical bHLH protein. EMBO J. 26 4756–4767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban AV 2016 Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170 1903–1916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salter MG, Franklin KA and Whitelam GC 2003 Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426 680–683

    CAS  PubMed  Google Scholar 

  • Sasidharan R, Chinnappa CC, Staal M, Elzenga JTM, Yokoyama R, Nishitani K, Voesenek LA and Pierik R 2010 Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 154 978–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller GE and Kieber JJ 2002 Ethylene. Arabidopsis Book. 1 e0071

    PubMed  PubMed Central  Google Scholar 

  • Schena M, Lloyd AM and Davis RW 1993 The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Dev. 7 367–379

    CAS  PubMed  Google Scholar 

  • Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C and Casal JJ 2010 Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol. 154 401–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sellaro R, Yanovsky MJ and Casal JJ 2011 Repression of shade‐avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis. Plant J. 68 919–928

    CAS  PubMed  Google Scholar 

  • Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G and Ruberti I 2005 A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Gene Dev. 19 2811–2815

    CAS  PubMed  Google Scholar 

  • Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L, Johnen P, et al. 2015 Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27 189–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V, Jung J, López-Vidriero I, Franco-Zorrilla JM, Panigrahi KCS, Nanao MH, Wigge PA and Zubieta C 2020 Molecular mechanisms of Evening Complex activity in Arabidopsis. PNAS USA 117 6901–6909

    CAS  PubMed  Google Scholar 

  • Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G and Ruberti I 1999 Shade avoidance responses are mediated by the ATHB-2 HD-zip protein, a negative regulator of gene expression. Development 126 4235–4245

    CAS  PubMed  Google Scholar 

  • Sun YY, Sun YJ, Chen L, Xu H and Ma J 2012 Effects of different sowing dates and low-light stress at heading stage on the physiological characteristics and grain yield of hybrid rice. Chinese J. Appl. Ecol. 23 2737–2744

    CAS  Google Scholar 

  • Takemiya A, Inoue SI, Doi M, Kinoshita T and Shimazaki KI 2005 Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17 1120–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, et al. J 2008 Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133 164–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y and Shigeoka S 2006 Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47 380–390

    CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M and Halliday KJ 2014 The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet 10 e1004416

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lu Y, Zhongyuan C, Wang S, Ding Y and Ding CQ 2018 Transcriptomic analysis of field-grown rice (Oryza sativa L.) reveals responses to shade stress in reproductive stage. Plant Growth Regul. 84 10

    Google Scholar 

  • Waters MT and Smith SM 2013 KAI2-and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol. Plant 6 63–75

    CAS  PubMed  Google Scholar 

  • Wollenberg AC, Strasser B, Cerdán PD and Amasino RM 2008 Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering. Plant Physiol. 148 1681–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhang W, Ding Y, Zhang J, Cambula ED, Weng F, Liu Z, Ding C, Tang S, Chen L, Wang S and Li G 2017 Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in Japonica rice (Oryza sativa L.). Front. Plant Sci. 8 881

    PubMed  PubMed Central  Google Scholar 

  • Xie Y, Liu Y, Wang H, Ma X, Wang B, Wu G and Wang H 2017 Phytochrome interacting factors directly suppress MIR156 expression to enhance shade avoidance syndrome in Arabidopsis. Nat. Commun. 8 348

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kurokawa H, Nitta Y and Yoshida T 1995 Varietal differences of tillering response to shading and nitrogen levels in rice plant: Comparison between high tillering semi-dwarf indica and low tillering japonica. Jpn. J. Crop Sci. 64 227–234

    Google Scholar 

  • Yang C and Lin Li 2017 Hormonal regulation in shade avoidance. Front. Plant. Sci. 8 1527–1535

    PubMed  PubMed Central  Google Scholar 

  • Yu J, Qiu H, Liu X, Wang M, Gao Y, Chory J and Tao Y 2015 Characterization of tub4P287L, a β‐tubulin mutant, revealed new aspects of microtubule regulation in shade. J. Integr. Plant. Biol. 57 757–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J and Yin Y 2008 Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. PNAS USA 105 7618–7623

    CAS  PubMed  Google Scholar 

  • Zhang Y, Pfeiffer A, Tepperman JM, Dalton-Roesler J, Leivar P, Grandio EG and Quail PH 2020 Central clock components modulate plant shade avoidance by directly repressing transcriptional activation activity of PIF proteins. Proc. Nat. Acad. Sci. 117 3261–3269

    CAS  PubMed  Google Scholar 

  • Zhu P, Yang SM, Ma J, Li SX and Chen Y 2008 Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination. Acta Agron. Sin. 34 2003–2009

    CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Department of Science and Technology, Science Engineering Research Board, India, File Number: YSS/2015/000659 and DST WOS-A Women Scientist Grant No.: SR/WOS-A/LS-369/2018. We thank the Department of Atomic Energy, NISER Central Infrastructural Facility, for all their support. We also thank the President, Siksha ‘O’ Anusandhan Deemed to be University, Odisha, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusmita Panigrahy.

Additional information

Communicated by Manchikatla Venkat Rajam.

Corresponding editor: Manchikatla Venkat Rajam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahy, M., Majeed, N. & Panigrahi, K.C.S. Low-light and its effects on crop yield: Genetic and genomic implications. J Biosci 45, 102 (2020). https://doi.org/10.1007/s12038-020-00070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00070-1

Keywords

Navigation