Skip to main content
Log in

Influence of Ferrous Sulfide on Carbothermic Reduction of Panzhihua Ilmenite Concentrate

  • High Temperature Processing of Complex Ores
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To elucidate the effects of FeS on the carbothermic reduction of ilmenite, a series of tests were conducted using non-isothermal thermogravimetric analysis at heating rates of 10°C/min, 15°C/min, 20°C/min, and 25°C/min. The Malek method was used to analyze the reduction mechanism and obtain a kinetic model, and the Starink method was used to calculate the apparent activation energy. The morphology of the reduction products was examined by scanning electron microscopy. A complementary series of isothermal carbothermic reductions tests was also performed in a vertical tube furnace to study the effect of FeS on the metallization of Fe and TiO2 grade in the slag phases. The results show that the carbothermic reduction of the ilmenite concentrate in the presence of FeS proceeds in four stages. FeS showed a negative effect to the carbothermic reduction of ilmenite as its addition of 2.5 wt.% increased the apparent activation energy from 486 kJ mol−1 to 565 kJ mol−1 and decreased metallization by 11.1% and TiO2 grade in the slag phases by 7.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Huang, X. Lv, C. Bai, K. Zhang, and G. Qiu, Steel Res. Int. 84, 892 (2013).

    Article  Google Scholar 

  2. J. Zhang, G. Zhang, Q. Zhu, C. Lei, Z. Xie, and H. Li, Metall. Mater. Trans. B 45, 914 (2014).

    Article  Google Scholar 

  3. Y. Wang and Z. Yuan, Int. J. Miner. Process. 81, 133 (2006).

    Article  Google Scholar 

  4. K. Zhang, X. Lv, R. Huang, B. Song, and F. Xi, Metall. Mater. Trans. B 45, 923 (2013).

    Article  Google Scholar 

  5. W. Lv, X. Lv, J. Xiang, J. Wang, X. Lv, C. Bai, and B. Song, Int. J. Miner. Process. 169, 176 (2017).

    Article  Google Scholar 

  6. W. Lv, X. Lv, J. Xiang, Y. Zhang, S. Li, C. Bai, B. Song, and K. Han, Int. J. Miner. Process. 167, 68 (2017).

    Article  Google Scholar 

  7. W. Lv, C. Bai, X. Lv, K. Hu, X. Lv, J. Xiang, and B. Song, Powder Technol. 340, 354 (2018).

    Article  Google Scholar 

  8. R. Huang, P. Liu, X. Qian, and J. Zhang, Vacuum 134, 20 (2016).

    Article  Google Scholar 

  9. Z. Yuan, X. Wang, C. Xu, W. Li, and M. Kwauk, Miner. Eng. 19, 975 (2006).

    Article  Google Scholar 

  10. T.S. Mackey, JOM J. Miner. Met. Mater. Soc. 46, 59 (1994).

    Article  Google Scholar 

  11. S. El-Tawil, I. Morsi, A. Yehia, and A. Francis, Can. Metall. Q. 35, 31 (1996).

    Article  Google Scholar 

  12. B. Song, X. Lv, H.H. Miao, K. Han, K. Zhang, and R. Huang, ISIJ Int. 56, 2140 (2016).

    Article  Google Scholar 

  13. G. Li, T. Shi, M. Rao, T. Jiang, and Y. Zhang, Miner. Eng. 32, 19 (2012).

    Article  Google Scholar 

  14. M. Rao, G. Li, X. Zhang, J. Luo, Z. Peng, and T. Jiang, Sep. Sci. Technol. 51, 1408 (2016).

    Article  Google Scholar 

  15. M. Jiang, T. Sun, Z. Liu, J. Kou, N. Liu, and S. Zhang, Int. J. Miner. Process. 123, 32 (2013).

    Article  Google Scholar 

  16. J. Lu, S. Liu, J. Shangguan, W. Du, F. Pan, and S. Yang, Miner. Eng. 49, 154 (2013).

    Article  Google Scholar 

  17. C. Geng, T. Sun, H. Yang, Y. Ma, E. Gao, and C. Xu, ISIJ Int. 55, 2543 (2015).

    Article  Google Scholar 

  18. G.-R. Li, H.-M. Wang, Q.-X. Dai, Y.-T. Zhao, and J.-S. Li, J. Iron. Steel Res. Int. 14, 25 (2007).

    Article  Google Scholar 

  19. Z. Tong, J. Qiao, and X. Jiang, Ironmak. Steelmak. 44, 237 (2017).

    Article  Google Scholar 

  20. G.H. Kim and I. Sohn, Metall. Mater. Trans. B 42, 1218 (2011).

    Article  Google Scholar 

  21. H. Kim, W. Kim, J. Park, and D.J. Min, Steel Res. Int. 81, 17 (2010).

    Article  Google Scholar 

  22. Y. Rao, Metall. Trans. 2, 1439 (1971).

    Google Scholar 

  23. J. Málek and V. Smrčka, Thermochim. Acta 186, 153 (1991).

    Article  Google Scholar 

  24. J. Sestak and J. Malek, Solid State Ion. 63–65, 245 (1993).

    Article  Google Scholar 

  25. J. Málek, Thermochim. Acta 200, 257 (1992).

    Article  Google Scholar 

  26. J. Málek and J.M. Criado, Thermochim. Acta 236, 187 (1994).

    Article  Google Scholar 

  27. L. Huang, Y. Chen, G. Liu, S. Li, Y. Liu, and X. Gao, Energy 87, 31 (2015).

    Article  Google Scholar 

  28. W. Lv, X. Lv, X. Lv, J. Xiang, C. Bai, and B. Song, Miner. Proc. Extr. Met. 1, 239 (2018).

    Google Scholar 

  29. M.J. Starink, Thermochim. Acta 404, 163 (2003).

    Article  Google Scholar 

  30. S. Mrowec and K. Przybylski, Oxid. Met. 23, 107 (1985).

    Article  Google Scholar 

  31. L. Vlaev, N. Nedelchev, K. Gyurova, and M. Zagorcheva, J. Anal. Appl. Pyrol. 81, 253 (2008).

    Article  Google Scholar 

  32. K. Heide, W. Höland, H. Golker, K. Seyfarth, B. Müller, and R. Sauer, Thermochim. Acta 13, 365 (1975).

    Article  Google Scholar 

  33. J. Šesták and G. Berggren, Thermochim. Acta 3, 1 (1971).

    Article  Google Scholar 

  34. S. Tamhankar and L. Doraiswamy, AIChE J. 25, 561 (1979).

    Article  Google Scholar 

  35. C. Dickinson and G. Heal, Thermochim. Acta 340, 89 (1999).

    Article  Google Scholar 

  36. R.J. Munz and E.J. Chin, Can. Metall. Q. 30, 21 (1991).

    Article  Google Scholar 

  37. P. Kozakevitch, S. Chatel, G. Urbain, and M. Sage, Rev. Metall. 52, 139 (1955).

    Article  Google Scholar 

  38. J. Lee and K. Morita, Steel Res. Int. 73, 367 (2002).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities (2018CDYJSY0055) and National Key R&D Program of China (2018YFC1900500). Wei Lv acknowledges the financial support from the China Scholarship Council. Chinese Government Scholarship (201806050068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, W., Zhao, S., Elliott, R. et al. Influence of Ferrous Sulfide on Carbothermic Reduction of Panzhihua Ilmenite Concentrate. JOM 72, 3393–3400 (2020). https://doi.org/10.1007/s11837-020-04295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04295-1

Navigation