Skip to main content
Log in

Multiple human trajectory prediction and cooperative navigation modeling in crowded scenes

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

As mobile robots start operating in environments crowded with humans, human-aware navigation is required to make these robots navigate safely, efficiently and in socially compliant manner. People navigate in an interactive and cooperative fashion so that, they are able to find their path to a destination even if there is no clear route leading to it. There are significant efforts to solve this problem for mobile robots; however, they are not scalable to high human density and learning based approaches depend heavily on the context and configuration of the set they are trained with. We develop a method which infers initial trajectories from Gaussian processes and updates these trajectories jointly for all agents using a cost based interaction approach. We condition Gaussian processes online with the best hypothesis at each step of prediction horizon. The method is tested on a common public dataset and it is shown that it outperforms two state-of-the-art approaches in terms of human-likeness of predicted trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Trautman P, Krause A (2010) Unfreezing the robot: navigation in dense, interacting crowds. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 797–803. https://doi.org/10.1109/IROS.2010.5654369

  2. Bennewitz M (2005) Learning motion patterns of people for compliant robot motion. Int J Robot Res 24(1):31–48. https://doi.org/10.1177/0278364904048962

    Article  Google Scholar 

  3. Helble H, Cameron S (2007) 3-D path planning and target trajectory prediction for the Oxford aerial tracking system. In: Proceedings—IEEE international conference on robotics and automation, pp 1042–1048. https://doi.org/10.1109/ROBOT.2007.363122

  4. Thompson S, Horiuchi T, Kagami S (2009) A probabilistic model of human motion and navigation intent for mobile robot path planning. In: ICARA 2009—proceedings of the 4th international conference on autonomous robots and agents, pp 663–668. https://doi.org/10.1109/ICARA.2000.4803931

  5. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286. https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  6. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(July):487–490

    Article  Google Scholar 

  7. Helbing D, Molnár P, Farkas IJ, Bolay K (2001) Self-organizing pedestrian movement. Environ Plan 28(3):361–383. https://doi.org/10.1068/b2697

    Article  Google Scholar 

  8. Luber M, Stork JA, Tipaldi GD, Arras KO (2010) People tracking with human motion predictions from social forces. In: Proceedings—IEEE international conference on robotics and automation, pp 464–469. https://doi.org/10.1109/ROBOT.2010.5509779

  9. Pellegrini S, Ess A, Schindler K, Gool LV (2009) You’ll never walk alone: modeling social behavior for multi-target tracking.pdf (Iccv), pp 261–268

  10. Pellegrini S, Ess A, Tanaskovic M, Van Gool L (2010) Wrong turn—no dead end: a stochastic pedestrian motion model. In: 2010 IEEE computer society conference on computer vision and pattern recognition—workshops, CVPRW 2010, pp 15–22. https://doi.org/10.1109/CVPRW.2010.5543166

  11. Helbing D, Johansson A (2011) Pedestrian, crowd and evacuation dynamics. Springer, New York, pp 697–716

    Google Scholar 

  12. Truong XT, Yoong VN, Ngo TD (2017) Socially aware robot navigation system in human interactive environments. Intel Serv Robot 10(4):287–295. https://doi.org/10.1007/s11370-017-0232-y

    Article  Google Scholar 

  13. Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using the relative velocity paradigm. Int J Robot Res 17(7):760–772. https://doi.org/10.1109/robot.1993.292038

    Article  Google Scholar 

  14. Van Berg JD, Lin M, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings—IEEE international conference on robotics and automation, pp 1928–1935. https://doi.org/10.1109/ROBOT.2008.4543489

  15. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98. https://doi.org/10.1177/027836498600500106

    Article  Google Scholar 

  16. Koren Y (1991) Potential field methods and their limitations for mobile robot navigation. In: Proceedings of IEEE international conference on robotics and automation, pp 1398–1404

  17. Hall ET (1974) Handbook for proxemic research. In: Society for the anthropology of visual communication

  18. Svenstrup M, Bak T, Andersen HJ (2010) Trajectory planning for robots in dynamic human environments. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 4293–4298. https://doi.org/10.1109/IROS.2010.5651531

  19. Pradhan N, Burg T, Birchfield S (2011) Robot crowd navigation using predictive position fields in the potential function framework. In: Proceedings of the 2011 American control conference, pp 4628–4633. https://doi.org/10.1109/ACC.2011.5991384

  20. Ziebart BD, Ratliff N, Gallagher G, Mertz C, Peterson K, Bagnell JA, Hebert M, Dey AK, Srinivasa S (2009) Planning-based prediction for pedestrians. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, May 2014, pp 3931–3936. https://doi.org/10.1109/IROS.2009.5354147

  21. Trautman P, Ma J, Murray RM, Krause A (2013) Robot navigation in dense human crowds: the case for cooperation. In: 2013 IEEE international conference on robotics and automation, pp 2153–2160. https://doi.org/10.1109/ICRA.2013.6630866

  22. Kuderer M, Kretzschmar H, Sprunk C, Burgard W (2012) Feature-based prediction of trajectories for socially compliant navigation. In: Robotics: science and systems

  23. Kuderer M, Kretzschmar H, Burgard W (2013) Teaching mobile robots to cooperatively navigate in populated environments. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 3138–3143. https://doi.org/10.1109/IROS.2013.6696802

  24. Kretzschmar H, Spies M, Sprunk C, Burgard W (2016) Socially compliant mobile robot navigation via inverse reinforcement learning. Int J Robot Res 35(11):1352–1370. https://doi.org/10.1177/0278364915619772

    Article  Google Scholar 

  25. Kim B, Pineau J (2013) Human-like navigation: socially adaptive path planning in dynamic environments. In: RSS 2013 workshop on inverse optimal control and robotic learning from demonstration

  26. Vasquez D, Okal B, Arras KO (2014) Inverse reinforcement learning algorithms and features for robot navigation in crowds: an experimental comparison. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (Iros), pp 1341–1346. https://doi.org/10.1109/IROS.2014.6942731

  27. Turnwald A, Althoff D, Wollherr D, Buss M (2016) Understanding human avoidance behavior: interaction-aware decision making based on game theory. Int J Soc Robot 8(2):331–351. https://doi.org/10.1007/s12369-016-0342-2

    Article  Google Scholar 

  28. Turnwald A, Wollherr D (2018) Human-like motion planning based on game theoretic decision making. Int J Soc Robot. https://doi.org/10.1007/s12369-018-0487-2

    Article  Google Scholar 

  29. Vemula A, Muelling K, Oh J (2017) Modeling cooperative navigation in dense human crowds. In: Proceedings—IEEE international conference on robotics and automation, pp 1685–1692. https://doi.org/10.1109/ICRA.2017.7989199, arxiv:1705.06201

  30. Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L, Savarese S (2016) Social LSTM: human trajectory prediction in crowded spaces. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 961–971. https://doi.org/10.1109/CVPR.2016.110

  31. Alahi A, Ramanathan V, Fei-Fei L (2017) Tracking millions of humans in crowded spaces. In: Group and crowd behavior for computer vision (i), pp 115–135. https://doi.org/10.1016/B978-0-12-809276-7.00007-2

  32. Bartoli F, Lisanti G, Ballan L, Del Bimbo A (2018) Context-aware trajectory prediction. ICPR, pp 1941–1946

  33. Bhattacharyya A, Fritz M, Schiele B (2018) Long-term on-board prediction of people in traffic scenes under uncertainty. CVPR

  34. Chandra R, Bhattacharya U, Bera A, Manocha D (2019) Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. CVPR

  35. Xue H, Huynh DQ, Reynolds M (2018) SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. CVPR, pp 1186–1194

  36. Trautman P (2018) Sparse interacting Gaussian processes: efficiency and optimality theorems of autonomous crowd navigation. In: 2017 IEEE 56th annual conference on decision and control, CDC 2017 2018-January(May), pp 327–334. https://doi.org/10.1109/CDC.2017.8263686, arXiv:1705.03639v1

  37. Trautman P, Ma J, Murray RM, Krause A (2015) Robot navigation in dense human crowds: statistical models and experimental studies of human-robot cooperation. Int J Robot Res 34(3):335–356. https://doi.org/10.1177/0278364914557874, arxiv:1504.00702

  38. Epley N, Waytz A, Cacioppo JT (2007) On seeing human: a three-factor theory of anthropomorphism. Psychol Rev 114(4):864–86. https://doi.org/10.1037/0033-295X.114.4.864

    Article  Google Scholar 

  39. Papadopoulos AV, Bascetta L, Ferretti G (2016) Generation of human walking paths. Auton Robot 40(1):59–75. https://doi.org/10.1007/s10514-015-9443-2

    Article  Google Scholar 

  40. LaValle SM (2006) Planning algorithms. Plan Algorithms 9780521862059:1–826. https://doi.org/10.1017/CBO9780511546877

    Article  MATH  Google Scholar 

  41. Ellis D, Sommerlade E, Reid I (2009) Modelling pedestrian trajectories with gaussian processes. Ninth Int Workshop Vis Surveill 1:27110–27110. https://doi.org/10.1109/ICCVW.2009.5457470

    Article  Google Scholar 

  42. Kim K, Lee D, Essa I (2012) Detecting regions of interest in dynamic scenes with camera motions. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 1258–1265. https://doi.org/10.1109/CVPR.2012.6247809

  43. Marder-Eppstein E, Berger E, Foote T, Gerkey B, Konolige K (2010) The office marathon: robust navigation in an indoor office environment. In: International conference on robotics and automation

  44. Ashton NL, Shaw ME (1980) Empirical investigations of a reconceptualized personal space. Bull Psychon Soc 15(5):309–312. https://doi.org/10.3758/BF03334542

    Article  Google Scholar 

  45. Aiello JR (1987) Human spatial behavior. Handbook of environmental psychology. Wiley, New York, pp 359–504

    Google Scholar 

  46. Gérin-Lajoie M, Richards CL, McFadyen BJ (2005) The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Mot Control 9(3):242–69. https://doi.org/10.1123/mcj.9.3.242

    Article  Google Scholar 

  47. Kirby R, Simmons R, Forlizzi J (2009) Companion: a constraint-optimizing method for person-acceptable navigation. In: RO-MAN 2009—the 18th IEEE international symposium on robot and human interactive communication, pp 607–612. https://doi.org/10.1109/ROMAN.2009.5326271

  48. Nakauchi Y, Simmons RG (2002) A social robot that stands in line. Auton Robots 12:313–324

    Article  Google Scholar 

  49. Walters ML, Dautenhahn K, te Boekhorst R, , Kaouri C, Woods S, Nehaniv C, Lee D, Werry I (2005) The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In: ROMAN 2005. IEEE international workshop on robot and human interactive communication, pp 347–352. https://doi.org/10.1109/ROMAN.2005.1513803

  50. Hall ET (1966) The hidden dimension. Doubleday, New York

    Google Scholar 

  51. Wall-Scheffler CM (2012) Size and shape: morphology’s impact on human speed and mobility. J Anthropol 2012:1–9. https://doi.org/10.1155/2012/340493

    Article  Google Scholar 

  52. Wagnild J, Wall-Scheffler CM (2013) Energetic consequences of human sociality: walking speed choices among friendly dyads. PLoS ONE 8(10):1–6. https://doi.org/10.1371/journal.pone.0076576

    Article  Google Scholar 

  53. Alexander RMN (2002) Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture. Am J Hum Biol 14(5):641–648. https://doi.org/10.1002/ajhb.10067

    Article  Google Scholar 

  54. O’Connor SM, Donelan JM (2012) Fast visual prediction and slow optimization of preferred walking speed. J Neurophysiol 107(9):2549–2559. https://doi.org/10.1152/jn.00866.2011

    Article  Google Scholar 

  55. Bastien GJ, Willems PA, Schepens B, Heglund NC (2005) Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol 94(1–2):76–83. https://doi.org/10.1007/s00421-004-1286-z

    Article  Google Scholar 

  56. DeJaeger D, Willems PA, Heglund NC (2001) The energy cost of walking in children. Pflugers Arch 441(4):538–543. https://doi.org/10.1007/s004240000443

    Article  Google Scholar 

  57. Browning RC, Kram R (2005) Energetic cost and preferred speed of walking in obese vs. normal weight women. Obes Res 13(5):891–899. https://doi.org/10.1038/oby.2005.103

    Article  Google Scholar 

  58. Browning RC, Baker EA, Herron JA, Kram R (2006) Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol 100(2):390–398. https://doi.org/10.1152/japplphysiol.00767.2005

    Article  Google Scholar 

  59. Colman AM (2003) Cooperation, psychological game theory, and limitations of rationality in social interaction. Behav Brain Sci 26(2):139–153. https://doi.org/10.1017/S0140525X03470052

    Article  Google Scholar 

  60. Bitgood S, Dukes S (2006) Not another step! Economy of movement and pedestrian choice point behavior in shopping malls. Environ Behav 38(3):394–405. https://doi.org/10.1177/0013916505280081

    Article  Google Scholar 

  61. Csibra G, Gergely G, Biro S, Koos O, Brockbank M (1999) Goal attribution without agency cues: the perception of ’pure reason’ in infancy. Cognition 72(3):237–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akif Hacinecipoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacinecipoglu, A., Konukseven, E.I. & Koku, A.B. Multiple human trajectory prediction and cooperative navigation modeling in crowded scenes. Intel Serv Robotics 13, 479–493 (2020). https://doi.org/10.1007/s11370-020-00333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-020-00333-8

Keywords

Navigation