Skip to main content
Log in

The effects of geometrical shape and impurity position on the self-polarization of a donor impurity in an infinite GaAs/AlAs tetragonal quantum dot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using the variational method within the effective-mass approximation, the effects of geometrical shape and impurity position on the ground-state self-polarization and binding energy of a donor impurity are theoretically studied for the infinite GaAs/AlAs tetragonal quantum dot. We have found that the ground-state self-polarization and binding energy depend on geometrical shape and impurity-AlAs layer distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I Erdogan, O Akankan and H Akbas Phys. E 42 136 (2009)

    Article  Google Scholar 

  2. E Sadeghi Phys. E 41 365 (2009)

    Article  Google Scholar 

  3. S E Okan, I Erdogan and H Akbas Phys. E 21 91 (2004)

    Article  Google Scholar 

  4. C Dane, H Akbas, N Talip and K Kasapoğlu Phys. E 39 95 (2007)

    Article  Google Scholar 

  5. H Akbas, C Dane, K Kasapoğlu and N Talip Phys. E 40 627 (2008)

    Article  Google Scholar 

  6. O Akankan, I Erdogan and H Akbas Phys. E 35 217 (2006)

    Article  Google Scholar 

  7. M Ulas, H Akbas and M Tomak Phys. Stat. Sol. B 200 67 (1997)

    Article  ADS  Google Scholar 

  8. V A Holovatsky, M Ya Yakhnevych and O M Voitsekhivska Condens. Phys. 21 1373 (2018)

    Google Scholar 

  9. E B Al, E Kasapoğlu, S Sakiroglu, C A Dukue and I Sokmen J. Mol. Struct. 1157 288 (2018)

    Article  ADS  Google Scholar 

  10. B M U D Bhat and R A Zargar Comput. Condens. Matter 12 14 (2017)

    Article  Google Scholar 

  11. H Hosseini and M J Karimi Optik 138 427 (2017)

    Article  ADS  Google Scholar 

  12. O Akankan Superlattice Microstruct. 55 45 (2013)

    Article  ADS  Google Scholar 

  13. Y Yakar, B Cakır and A Ozmen Chem. Phys. Lett. 708 138 (2018)

    Article  ADS  Google Scholar 

  14. A Chafai, I Essaoudi, A Ainane, F Dujardin and R Ahuja Phys. E 94 96 (2017)

    Article  Google Scholar 

  15. A Ghosh and M Ghosh Superlattice Microstruct. 104 438 (2017)

    Article  ADS  Google Scholar 

  16. A Ghosh, A Bera, S Saha, S M Arif and M. Ghosh Superlattice Microstruct. 114 259 (2018)

    Article  ADS  Google Scholar 

  17. A Ghosh, A Bera and M Ghosh Chem. Phys. Lett. 678 119 (2017)

    Article  ADS  Google Scholar 

  18. A Ghosh and M Ghosh Phys. B 695 3054 (2017)

    Google Scholar 

  19. E Owji, A Keshavarz and H Mokhtari Phys. B 58 7 (2017)

    Article  ADS  Google Scholar 

  20. H Sari, F Ugan, S Sakiroglu, U Yesilgul and I Sokmen J. Phys. Chem. Sol. 120 279 (2018)

    Article  ADS  Google Scholar 

  21. A Sali and H Satori Superlattice Microstruct. 69 38 (2014)

    Article  ADS  Google Scholar 

  22. A Sali, J Kharbach, A Rezzouk and M O Jamil Superlattice Microstruct. 104 93 (2017)

    Article  ADS  Google Scholar 

  23. A Bera and M Ghosh J. Phys. Chem. Sol. 109 26 (2017)

    Article  ADS  Google Scholar 

  24. S Yilmaz and M Kirak Int. J. Mod. Phys. B. 32 1850154 (2018)

    Article  ADS  Google Scholar 

  25. F K Boz, B Nisanci, S Aktas and S E Okan Appl. Surf. Sci. 387 76 (2016)

    Article  ADS  Google Scholar 

  26. I Erdogan, O Akankan and H Akbas Phys. E 35 27 (2006)

    Article  Google Scholar 

  27. S Sarkar, S Sarkar and C Bose Phys. B Condens. Matter 541 75 (2018)

    Article  ADS  Google Scholar 

  28. M Ulas, I Erdogan, E Cicek and S Senturk Dalgic Phys. E 25 515 (2005)

    Article  Google Scholar 

  29. F M Michel-Calendini, L Hafid, G Godefroy and H Chermete Solid State Commun. 54 951 (1985)

    Article  ADS  Google Scholar 

  30. B Gao, H T Xue, F L Tang and Y W Cheng Curr. Appl. Phys. 17 1564 (2017)

    Article  ADS  Google Scholar 

  31. H M Tutuncu, H Y Uzunok, G P Srivastava, V Ozdemir and G Ugur Intermetallics 96 25 (2018)

    Article  Google Scholar 

  32. X Yang, Y Wang, Q Song, Y Chen and Y H Xue Acta Phys. Pol. A 133 1138 (2018)

    Article  ADS  Google Scholar 

  33. R B Chen and Y T Lu Phys. Lett. A 264 417 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Akankan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Akbas: Retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akankan, O., Erdogan, I., Mese, A.I. et al. The effects of geometrical shape and impurity position on the self-polarization of a donor impurity in an infinite GaAs/AlAs tetragonal quantum dot. Indian J Phys 95, 1341–1344 (2021). https://doi.org/10.1007/s12648-020-01813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01813-4

Keywords

Navigation