Skip to main content
Log in

Effect of initial packing density, stress level and particle size ratio on the behavior of binary granular material: a micromechanical approach

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The geo-mechanical behavior of granular materials rigorously depends on their initial packing density, stress level and particle size distribution. Moreover, the behavior of binary granular soil is affected by the quality and quantity of their small particles named the fines content (FC). The contribution mechanism of the FC to the load-bearing structure of the soil at various particle sizes, stress levels and densities is still pending. The present study aimed to use a micromechanical approach to simulate the behavior of binary mixtures with particle size ratios (α) of 2.5 to 7.1 and study the effect of stress level and initial packing density on the stress–strain behavior using discrete element method (DEM). Accordingly, the effect of FC on the internal friction angle, anisotropy parameters, coordination number and coarse–fine (C–F) contacts have been studied. The results indicate that the variation in peak shear strength versus FC is bell-shaped with a minimum for FC of 30% to 40% and this is independent of initial packing density and stress level, but depending on the value of α. The greater particle size ratios (α = 7.1) increase the tendency of fines particles to rotate during biaxial testing, reduced the shear strength in comparison with samples with small particle size ratios (α = 2.5). Exceeding the threshold FC (30–40%) led to formation of stronger force chains among the fines and increased the role of FC on the peak shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a c :

Anisotropy coefficient of contact normal

a n :

Anisotropy coefficient of normal contact force

a t :

Anisotropy coefficient of tangent contact force

ε 1 :

Axial strain

C–C :

Coarse–coarse

C–F :

Coarse–fine

P :

Confining pressure

C N :

Coordination number

D :

Packing density

FC :

Fines content

F–F :

Fine–Fine

μ:

Friction coefficient between particles

φ :

Internal friction angle

D c :

Maximum diameter of coarse grains

D f :

Minimum diameter of fine grains

K n :

Normal stiffness

F n :

Normal force

N t :

Number of particles

PSD :

Particle size distribution

α:

Particle size ratio

PFA :

Peak friction angle

δ:

Relative tangential surface displacement at the contact

q :

Shear stress

q/p :

Stress ratio

K S :

Tangent stiffness

ε v :

Volumetric strain

ζ :

Relative displacement of particle in the normal direction

References

  1. Abdel-Ghani, M., Petrie, J.G., Seville, J.P.K., Clift, R., Adams, M.J.: Mechanical properties of cohesive particulate solids. Powder Technol. 65, 113–123 (1991)

    Google Scholar 

  2. Abedi, S., Mirghasemi, A.A.: Particle shape consideration in numerical simulation of assemblies of irregularly shaped particles. Particuology 9(4), 387–397 (2011)

    Google Scholar 

  3. Atkinson, J.: The Mechanics of Soils and Foundations, Second Edition. (2011)

  4. Bayesteh, H., Ghasempour, T.: Role of the location and size of soluble particles in themechanical behavior of collapsible granular soil: a DEM simulation. Comput. Part. Mech. 6(3), 327–341 (2018)

    Google Scholar 

  5. Bayesteh, H., Mirghasemi, A.: Procedure to detect the contact of platy cohesive particles in discrete element analysis. Powder Technol. Vol. 244, 75–84 (2013)

    Google Scholar 

  6. Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35(2), 99–112 (1985)

    Google Scholar 

  7. Brandon, T.L., Clough, G.W., Rahardjo, P.P.: Fabrication of silty sand samples for large and small scale tests. Geotech. Test. J. 14(1), 46–55 (1991)

    Google Scholar 

  8. Chang, C.S., Deng, Y.: A particle packing model sand-silt mixtures with the effect of dual-skeleton. Granul. Matter 19, 80 (2017)

    Google Scholar 

  9. Chang, W., Phantachang, T.: Effects of gravel content on shear resistance of gravelly soils. Eng. Geol. 207, 78–90 (2016)

    Google Scholar 

  10. Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. ASCE J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Google Scholar 

  11. Choo, H., Burns, S.E.: Shear wave velocity of granular mxtures of silica particles as a function of finer fraction, size ratios and void ratios. Granul. Matter 17, 567–578 (2015)

    Google Scholar 

  12. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Google Scholar 

  13. Dai, B., Yang, J., Luo, X.: A numerical analysis of the shear behavior of granular soil with fines. Particuology 21, 160–172 (2015)

    Google Scholar 

  14. De Frias Lopez, R., Ekbland, J., Silfwerbrand, J.: Resilient properties of binary granular mixtures: a numerical investigation. Geocomput. Geotech. 76, 222–233 (2016)

    Google Scholar 

  15. De Frias Lopez, R., Silfwerbrand, J., Jelagin, D., Birgisson, B.: Force transmission and soil fabric of binary granular mixtures. Geotechnique 7(66), 578–583 (2016)

    Google Scholar 

  16. Dias, R.P., Teixeira, J.A., Mota, M.G., Yelshin, A.I.: Particulate binary mixtures: dependence of packing porosity on particle size ratio. Ind. Eng. Res. 43, 7912–7919 (2004)

    Google Scholar 

  17. Dodds, J.A.: The porosity and contact points in multicomponent random sphere packings calculated by a simple statistical geometric model. J. Colloid Interface Sci. 77(2), 317–327 (1980)

    ADS  Google Scholar 

  18. Evans, M.D., Zhou, S.: Liquefaction behavior of sand-gravel composites. J. Geotech. Eng. ASCE 121(3), 287–298 (1995)

    Google Scholar 

  19. Georgiannou, V.N.: The responre of sands with additions of particles of various shapes and sizes. Géotechnique 56(9), 639–649 (2006)

    Google Scholar 

  20. Gong, J., Liu, J.: Mechanical transitional behavior of binary mixtures via DEM: effect of differences in contact-type friction coefficients. Comput. Geotech. 85, 1–14 (2016)

    Google Scholar 

  21. Gong, J., Liu, J.: Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using a discrete element method. Particuology 32, 49–62 (2017)

    Google Scholar 

  22. Gong, J., Liu, J., Cui, L.: Shear behaviors of granular mixtures of gravel-shaped coarse and spherical fine particles investigated via discrete element method. Powder Technol. 353, 178–194 (2019)

    Google Scholar 

  23. Gong, J., Nie, Z., Zhu, Y., Liang, Z., Wang, X.: Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM. Comput. Geotech. 106, 161–176 (2019)

    Google Scholar 

  24. Gong, J., Wang, X., Li, L., Nie, Z.: DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils. Comput. Geotech. 112, 35–40 (2019)

    Google Scholar 

  25. Hamidi, A., Azini, E., Masoudi, B.: Effect of gradation on the shear strength–dilation behavior of well graded sand–gravel mixtures. Sci. Iran. 19(3), 393–402 (2012)

    Google Scholar 

  26. Huang, T.-T., Huang, A.-B., Kuo, Y.-C., Tsai, M.-D.: A laboratory study on the undrained strength of a silty sands from Central Western Tiwan. Soil Dyn. Earthq. Eng. 24(9), 733–743 (2004)

    Google Scholar 

  27. Khalili, Y., Mahboubi, A.: Discrete simulation and micromechanical analysis of two-dimensional saturated granular media. Particuology 15, 138–150 (2014)

    Google Scholar 

  28. Kokusho, T., Hara, T., Hiraoka, R.: Undrained shear strength of granular soils with different particle gradations. J. Geotech Geoenviron. Eng. 130(6), 621–629 (2004)

    Google Scholar 

  29. Lade, P.V., Liggic, C.D., Yamamuro, J.A.: Effects of non-plastic fines on minimum nad maximum void ratios of sand. Geotech. Test J. 21, 336–347 (1998)

    Google Scholar 

  30. Lade, P.V., Yamamuro, J.A.: Effects of nonplastic on static liquefaction of sands. Can. Geotech. J. 34, 918–928 (1997)

    Google Scholar 

  31. Lamei, M., Mirghasemi, A.A.: A discrete element model for simulating saturated granular soil. Particuology 9(6), 650–658 (2011)

    Google Scholar 

  32. Minh, N.H., Ceng, Y.P., Thornton, C.: Strong force networks in granular mixtures. Granul. Matter 16(1), 69–78 (2014)

    Google Scholar 

  33. Mirghasemi, A., Rothenburg, L., Matyas, E.: Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles. Géotechnique 52(3), 209–217 (2002)

    Google Scholar 

  34. Monkul, M.M., Yamamuro, J.A.: Influence of silt size and content on liquefaction behavior of sands. Can. Geotech. J. 48, 931–942 (2011)

    Google Scholar 

  35. Ng, T.T., Zhou, W., Chang, X.L.: Effect of particle shape and fine content on the behavior of binary mixture. J. Eng. Mech. 143, C4016008 (2016)

    Google Scholar 

  36. O’Sullivan, C.: Praticulate Discrete Element Modeling A Geomechanics Perspective. Taylor & Francis, USA (2011)

    Google Scholar 

  37. Ogarko, V., Luding, S.: Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems. J. Chem. Phys. 136, 124508 (2012)

    ADS  Google Scholar 

  38. Rahman, M.M., Lo, S.R., Baki, M.A.L.: Equivalent granular state parameter and undrained behavior of sand–fines mixtures. Acta Geotech. 6(4), 183–194 (2011)

    Google Scholar 

  39. Robertson, P.K., Campanella, R.G.: Liquefaction potential of sands using the CPT. ASCE J. Geotech. Eng. 111(3), 384–403 (1985)

    Google Scholar 

  40. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Google Scholar 

  41. Rothenburg, L., Bathurst, R.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11, 315–329 (1991)

    Google Scholar 

  42. Rothenburg, L., Kruyt, N.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    MATH  Google Scholar 

  43. Rui, R., Van, T.F., Xia, X., Van Eekelen, S., Hu, G., Xia, Y.: Evolution of soil arching: 2D DEM simulations. Comput. Geotech. 73, 109–209 (2016)

    Google Scholar 

  44. Santos, A., Yuste, S.B., López de Haro, M., Ogarko, V.: Equation of state of polydisperse hard-disk mixtures in the high-density regime. Phys. Rev. E 96, 062603 (2017)

    ADS  Google Scholar 

  45. Seyedi Hosseininia, E.: A micromechanical study on the stress rotation in granular materials due to fabric evolution. Powder Technol. 283, 462–474 (2015)

    Google Scholar 

  46. Seyedi Hosseininia, E.: Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles. Particuology 10, 542–552 (2012)

    Google Scholar 

  47. Seyedi Hosseininia, E.: Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul. Matter 14, 483–503 (2012)

    MATH  Google Scholar 

  48. Seyedi Hosseininia, E., Mirghasemi, A.A.: Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method. Powder Technol. 166, 100–112 (2006)

    Google Scholar 

  49. Shire, T., OSullivan, C., Hanley, K.J.: The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials. Granular Matter 18, 52 (2016)

    Google Scholar 

  50. Simoni, A., Houlsby, G.: The direct shear strength and dilatancy of sand–gravel mixtures. Geotech. Geol. Eng. 24, 523–549 (2006)

    Google Scholar 

  51. Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J.: Undrained fragility of clean sands, silty sands and sandy silts. J. Geotech. Geoenviron. 128(10), 849–859 (2002)

    Google Scholar 

  52. Tong, Z., Fu, P., Dafalias, Y.F.: Experimental investigation of shear strength of sands with inherent fabric anisotropy. Acto Geot 9, 257–275 (2014)

    Google Scholar 

  53. Ueda, T., Matsushima, T., Yamada, Y.: Effect of particle size ratio and volume fraction on shear strength of binary granular mixture. Granul. Matter 13(6), 731–742 (2011)

    Google Scholar 

  54. Vahidi-Nia, F., Lashkari, A., Binesh, S.M.: An insight into the mechanical behavior of binary granular soils. Particuology 21, 82–89 (2015)

    Google Scholar 

  55. Vallejo, L.E.: Interpretation of the limits in shear strength in binary granular material-clay mixture. Can. Geotech. J. 38(5), 97–104 (2001)

    Google Scholar 

  56. Wlacek, J., Staslak, M.: Effect of the particle size ratio on the structural properties of granular mixtures with discrete particle size distribution. Granul. Matter 20, 31 (2018)

    Google Scholar 

  57. Wood, F.M., Yamamuro, J.A., Lade, P.V.: Effect of depositional method on the undrained response of silty sand. Can. Geotech. J. 45, 1525–1537 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Bayesteh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidi-Nia, F., Bayesteh, H. & Khodaparast, M. Effect of initial packing density, stress level and particle size ratio on the behavior of binary granular material: a micromechanical approach. Granular Matter 22, 68 (2020). https://doi.org/10.1007/s10035-020-01036-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01036-8

Keywords

Navigation