Skip to main content
Log in

The phonological loop: is speech special?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been proposed that the maintenance of phonological information in verbal working memory (vWM) is carried by a domain-specific short-term storage center—the phonological loop—which is composed of a phonological store and an articulatory rehearsal system. Several brain regions including the left posterior inferior frontal gyrus (pIFG) and anterior supramarginal gyri (aSMG) are thought to support these processes. However, recent behavioral evidence suggests that verbal and non-verbal auditory information may be processed as part of a unique domain general short-term storage center instead of through specialized subsystems such as the phonological loop. In the current study, we used a single-pulse transcranial magnetic stimulation (TMS)-delayed priming paradigm with speech (syllables) and acoustically complex non-speech sounds (bird songs) to examine whether the pIFG and aSMG are involved in the processing of verbal information or, alternatively, in the processing of any complex auditory information. Our results demonstrate that TMS delivered to both regions had an effect on performance for speech and non-speech stimuli, but the nature of the effect was different. That is, priming was reduced for the speech sounds because TMS facilitated the detection of different but not identical stimuli, and accuracy was decreased for non-speech sounds. Since TMS interfered with both speech and non-speech sounds, these findings support the existence of an auditory short-term storage center located within the dorsal auditory stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In Baddeley’s model of vWM, since print is converted into sound-based representations before accessing the phonological loop, the assumption is that that the phonological loop holds sound-based representations of print material.

  2. Each of the 96 speech and 96 non-speech stimuli were presented twice, once with each stimulation site.

  3. This factor was not included in the analyses as it was not a factor of interest.

  4. We selected this parameter based on previous studies that stimulated similar regions within the inferior frontal cortex or the supramarginal gyrus (Devlin et al. 2003; Romero et al. 2006).

  5. We selected this region based on studies investigating phonological processes (Gitelman et al. 2005; McDermott et al. 2003).

  6. We selected this region based on a previous study from our group (Deschamps et al. 2014).

References

  • Aboitiz F (2018) A brain for speech. Evolutionary continuity in primate and human auditory-vocal processing. Front Neurosci. https://doi.org/10.3389/fnins.2018.00174

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson RC, Shiffrin RM (1968) Human memory: a proposed system and its control processes. Psychol Learn Motiv 2:89–195

    Google Scholar 

  • Awh E, Jonides EE, Schumacher EH, Koeppe RA, Katz S (1996) Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol Sci 7:25–31

    Google Scholar 

  • Baddeley A (1975) Word length and the structure of short-erm memory. J Verbal Learn Verbal Behav 14(6):575–589

    Google Scholar 

  • Baddeley A (1986) Working Memory. Clarendon Press, Oxford

    Google Scholar 

  • Baddeley A (1992) Working memory. Science 255(5044):556–559

    CAS  PubMed  Google Scholar 

  • Baddeley A (2003) Working memory and language: an overview. J Commun Disord 36(3):189–208

    PubMed  Google Scholar 

  • Baddeley A (2012) Working memory: theories, models, and controversies. Annu Rev Psychol 63:1–29

    PubMed  Google Scholar 

  • Baddeley A, Hitch GJ (1974) Working memory. In: Bower GA (ed) The psychology of learning and motivation: Advances in research and theory. Academic, New York

    Google Scholar 

  • Barrouillet P, Bernardin S, Camos V (2004) Time constraints and resource sharing in adults’ working memory spans. J Exp Psychol. https://doi.org/10.1037/0096-3445.133.1.83

    Article  Google Scholar 

  • Bergerbest D, Ghahremani DG, Gabrieli JD (2004) Neural correlates of auditory repetition priming: reduced fMRI activation in the auditory cortex. J Cogn Neurosci 16(6):966–977. https://doi.org/10.1162/0898929041502760

    Article  PubMed  Google Scholar 

  • Boersma P, Weenink D (2011). Praat: doing phonetics by computer (5.1.42). 5.1.42

  • Buchsbaum BR, D’Esposito M (2008) The search for the phonological store: from loop to convolution. J Cogn Neurosci 20(5):762–778

    PubMed  Google Scholar 

  • Buchsbaum Bradley R, D’Esposito M (2019) A sensorimotor view of verbal working memory. Cortex. https://doi.org/10.1016/j.cortex.2018.11.010

    Article  PubMed  Google Scholar 

  • Buchsbaum BR, Hickok G, Humphries C (2001) Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn Sci 25:663–678

    Google Scholar 

  • Burton MW, Small SL, Blumstein SE (2000) The role of segmentation in phonological processing: an fMRI investigation. J Cogn Neurosci 12(4):679–690

    CAS  PubMed  Google Scholar 

  • Burton MW, Locasto PC, Krebs-Noble D, Gullapalli RP (2005) A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. Neuroimage 26(3):647–661. https://doi.org/10.1016/j.neuroimage.2005.02.024

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495

    PubMed  Google Scholar 

  • Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2012) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 12(4):679–690

    Google Scholar 

  • Cattaneo L (2010) Tuning of ventral premotor cortex neurons to distinct observed grasp types: a TMS-priming study. Exp Brain Res 207(3–4):165–172. https://doi.org/10.1007/s00221-010-2454-5

    Article  PubMed  Google Scholar 

  • Cattaneo Z, Rota F, Vecchi T, Silvanto J (2008) Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. Eur J Neurosci 28(9):1924–1929. https://doi.org/10.1111/j.1460-9568.2008.06466.x

    Article  PubMed  Google Scholar 

  • Chao LL, Nielsen-Bohlman L, Knight RT (1995) Auditory event-related potentials dissociate early and late memory processes. Electroencephalogr Clin Neurophys. https://doi.org/10.1016/0168-5597(94)00256-E

    Article  Google Scholar 

  • Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24(2):332–338. https://doi.org/10.1016/j.neuroimage.2004.08.032

    Article  PubMed  Google Scholar 

  • Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci. https://doi.org/10.1017/S0140525X01003922

    Article  PubMed  Google Scholar 

  • Deschamps I, Baum SR, Gracco VL (2014) On the role of the supramarginal gyrus in phonological processing and verbal working memory: evidence from rTMS studies. Neuropsychologia 53:39–46. https://doi.org/10.1016/j.neuropsychologia.2013.10.015

    Article  PubMed  Google Scholar 

  • Devlin JT, Matthews PM, Rushworth MF (2003) Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 15(1):71–84

    PubMed  Google Scholar 

  • Fegen D, Buchsbaum BR, D’Esposito M (2015) The effect of rehearsal rate and memory load on verbal working memory. Neuroimage 105:120–131. https://doi.org/10.1016/j.neuroimage.2014.10.034

    Article  PubMed  Google Scholar 

  • Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, Petersen SE (1996) A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci 16(2):808–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaab N, Gaser C, Zaehle T, Jancke L, Schlaug G (2003) Functional anatomy of pitch memory–an fMRI study with sparse temporal sampling. Neuroimage 19(4):1417–1426

    PubMed  Google Scholar 

  • Gaskell MG, Marslen-Wilson WD (1997) Integrating form and meaning: a distributed model of speech perception. Lang Cogn Process 12(5–6):613–656

    Google Scholar 

  • Gaskell MG, Marslen-Wilson WD (2002) Representation and competition in the perception of spoken words. Cogn Psychol 45(2):220–266

    PubMed  Google Scholar 

  • Gitelman DR, Nobre AC, Sonty S, Parrish TB, Mesulam MM (2005) Language network specializations: an analysis with parallel task designs and functional magnetic resonance imaging. Neuroimage 26(4):975–985. https://doi.org/10.1016/j.neuroimage.2005.03.014

    Article  PubMed  Google Scholar 

  • Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25(35):8010–8016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber O (2000) Two different brain systems underlie phonological short-term memory in humans. Neuroimage 5(11):S407

    Google Scholar 

  • Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR (2010a) Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci U S A 107(38):16494–16499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Price CJ, Baumgaertner A, Geiss G, Koehnke M, Ulmer S, Siebner HR (2010b) The right posterior inferior frontal gyrus contributes to phonological word decisions in the healthy brain: evidence from dual-site TMS. Neuropsychologia 48(10):3155–3163

    PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Weigel A, Schuschan P, Siebner HR, Weise D, Classen J, Saur D (2016) Dissociating Parieto-Frontal Networks for Phonological and Semantic Word Decisions: a Condition-and-Perturb TMS Study. Cereb Cortex. https://doi.org/10.1093/cercor/bhv092

    Article  PubMed  Google Scholar 

  • Hasson U, Egidi G, Marelli M, Willems RM (2018) Grounding the neurobiology of language in first principles: the necessity of non-language-centric explanations for language comprehension. Cognition 180:135–157. https://doi.org/10.1016/j.cognition.2018.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  • Henson RN, Burgess N, Frith CD (2000a) Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia 38(4):426–440

    CAS  PubMed  Google Scholar 

  • Henson RN, Shallice T, Dolan R (2000b) Neuroimaging evidence for dissociable forms of repetition priming. Science 287(5456):1269–1272

    CAS  PubMed  Google Scholar 

  • Herwig U, Abler B, Schönfeldt-Lecuona C, Wunderlich A, Grothe J, Spitzer M, Walter H (2003) Verbal storage in a premotor–parietal network: evidence from fMRI-guided magnetic stimulation. Neuroimage 20(2):1032–1041

    CAS  PubMed  Google Scholar 

  • Hickok G, Buchsbaum BR, Humphries C, Muftuler T (2003) Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci 15(5):673–682

    PubMed  Google Scholar 

  • Hitch GJ, Baddeley AD (1976) Verbal reasoning and working memory. The Quarterly Journal of Experimental Psychology 28(4):603–621

    Google Scholar 

  • Hutchins S, Palmer C (2008) Repetition priming in music. J Exp Psychol Hum Percept Perform 34(3):693–707. https://doi.org/10.1037/0096-1523.34.3.693

    Article  PubMed  Google Scholar 

  • Imm J-H, Kang E, Youn T, Park H, Kim J Il, Kang JI et al (2008) Different hemispheric specializations for pitch and audioverbal working memory. NeuroReport 19(1):99–103

    PubMed  Google Scholar 

  • Jacquemot C, Scott SK (2006) What is the relationship between phonological short-term memory and speech processing? Trends Cogn Sci 10(11):480–486

    PubMed  Google Scholar 

  • Jones DM, Macken WJ (1993) Irrelevant tones produce an irrelevant speech effect: implications for phonological coding in working memory. J Exp Psychol Learn Mem Cogn 19(2):369

    Google Scholar 

  • Jones Dylan M, Hughes RW, Macken WJ (2007) The phonological store abandoned. Quarterly Journal of Experimental Psychology. https://doi.org/10.1080/17470210601147598

    Article  Google Scholar 

  • Kirschen MP, Davis-Ratner MS, Jerde TE, Schraedley-Desmond P, Desmond JE (2006) Enhancement of phonological memory following transcranial magnetic stimulation (TMS). Behav Neurol 17(3–4):187–194

    PubMed  PubMed Central  Google Scholar 

  • Kirschen MP, Chen SHA, Desmond JE (2010) Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol. https://doi.org/10.3233/BEN-2010-0266

    Article  PubMed  PubMed Central  Google Scholar 

  • Koelsch S, Schulze K, Sammler D, Fritz T, Muller K, Gruber O (2009) Functional architecture of verbal and tonal working memory: an FMRI study. Hum Brain Mapp 30(3):859–873. https://doi.org/10.1002/hbm.20550

    Article  PubMed  Google Scholar 

  • Kouider S, Dupoux E (2005) Subliminal speech priming. Psychol Sci 16(8):617–625. https://doi.org/10.1111/j.1467-9280.2005.01584.x

    Article  PubMed  Google Scholar 

  • Kumar S, Joseph S, Gander PE, Barascud N, Halpern AR, Griffiths TD (2016) A brain system for auditory working memory. J Neurosci 36(16):4492–4505. https://doi.org/10.1523/JNEUROSCI.4341-14.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao DA, Kronemer SI, Yau JM, Desmond JE, Marvel CL (2014) Motor system contributions to verbal and non-verbal working memory. Front Hum Neurosci 753:1–8

    Google Scholar 

  • Light LL, La Voie D, Kennison R (1995) Repetition priming of nonwords in young and older adults. J Exp Psychol Learn Mem Cogn 21(2):327–346

    CAS  PubMed  Google Scholar 

  • Macken WJ, Jones DM (2003) Reification of phonological storage. Q J Exp Psychol Sect A. https://doi.org/10.1080/02724980245000052

    Article  Google Scholar 

  • Macmillan NA, Creelman CD (1990) Response bias: characteristics of detection theory, threshold theory, and” nonparametric” indexes. Psychol Bull 107(3):401

    Google Scholar 

  • Macmillan NA, Creelman CD (2004) Detection theory: A user’s guide. Psychology press, London

    Google Scholar 

  • Martin RC (2005) Components of short-term memory and their relation to language processing: evidence from neuropsychology and neuroimaging. Curr Direct Psychol Sci 14(4):204–208

    Google Scholar 

  • Martin RC, Shelton JR, Yaffee LS (1994) Language processing and working memory: neuropsychological evidence for separate phonological and semantic capacities. J Mem Lang 33(1):83–111

    Google Scholar 

  • Martin RC, Wu D, Freedman M, Jackson EF, Lesch M (2003) An event-related fMRI investigation of phonological versus semantic short-term memory. J Neuroling 16(4):341–360

    Google Scholar 

  • Martinkauppi S, Rama P, Aronen HJ, Korvenoja A, Carlson S (2000) Working memory of auditory localization. Cereb Cortex 10(9):889–898

    CAS  PubMed  Google Scholar 

  • Marvel CL, Desmond JE (2012) From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang 120(1):42–51. https://doi.org/10.1016/j.bandl.2011.08.005

    Article  PubMed  Google Scholar 

  • McClelland JL, Elman JL (1986) The TRACE model of speech perception. Cogn Psychol 18(1):1–86

    CAS  PubMed  Google Scholar 

  • McDermott KB, Petersen SE, Watson JM, Ojemann JG (2003) A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia 41(3):293–303

    PubMed  Google Scholar 

  • Michon M, López V, Aboitiz F (2019) Origin and evolution of human language. Prog Brain Res. https://doi.org/10.1016/bs.pbr.2019.01.005

    Article  PubMed  Google Scholar 

  • Miniussi C, Ruzzoli M, Walsh V (2010) The mechanism of transcranial magnetic stimulation in cognition. Cortex. https://doi.org/10.1016/j.cortex.2009.03.004

    Article  PubMed  Google Scholar 

  • Mottaghy FM, Gangitano M, Krause BJ, Pascual-Leone A (2003) Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation. Neuroimage 18(3):565–575

    CAS  PubMed  Google Scholar 

  • Nees MA (2016) Have we forgotten auditory sensory memory? Retention intervals in studies of nonverbal auditory working memory. Front Psychol 7:1892

    PubMed  PubMed Central  Google Scholar 

  • Nixon P, Lazarova J, Hodinott-Hill I, Gough P, Passingham R (2004) The inferior frontal gyrus and phonological processing: an investigation using rTMS. J Cogn Neurosci 16(2):289–300

    PubMed  Google Scholar 

  • Norris D (1994) Shortlist: a connectionist model of continuous speech recognition. Cognition 52(3):189–234

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    CAS  PubMed  Google Scholar 

  • Othman E, Yusoff AN, Mohamad M, Abdul Manan H, Giampietro V, Abd Hamid AI et al (2019) Low intensity white noise improves performance in auditory working memory task: an fMRI study. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02444

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362(6418):342–345

    CAS  PubMed  Google Scholar 

  • Pechmann T, Mohr G (1992) Interference in memory for tonal pitch: implications for a working-memory model. Mem Cognit 20(3):314–320

    CAS  PubMed  Google Scholar 

  • Rodriguez-Jimenez R, Avila C, Garcia-Navarro C, Bagney A, Aragon AM, Ventura-Campos N et al (2009) Differential dorsolateral prefrontal cortex activation during a verbal n-back task according to sensory modality. Behav Brain Res 205(1):299–302. https://doi.org/10.1016/j.bbr.2009.08.022

    Article  PubMed  Google Scholar 

  • Romei V, Thut G, Silvanto J (2016) Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci 39(11):782–795. https://doi.org/10.1016/j.tins.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  • Romero L, Walsh V, Papagno C (2006) The neural correlates of phonological short-term memory: a repetitive transcranial magnetic stimulation study. J Cogn Neurosci 18(7):1147–1155

    CAS  PubMed  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039

    PubMed  PubMed Central  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92

    CAS  PubMed  Google Scholar 

  • Ruchkin DS, Berndt RS, Johnson R Jr, Ritter W, Grafman J, Canoune HL (1997) Modality-specific processing streams in verbal working memory: evidence from spatio-temporal patterns of brain activity. Brain Res Cogn Brain Res 6(2):95–113

    CAS  PubMed  Google Scholar 

  • Rueckl JG (1990) Similarity effects in word and pseudoword repetition priming. J Exp Psychol Learn Mem Cogn 16(3):374–391

    CAS  PubMed  Google Scholar 

  • Salamé P, Baddeley A (1982) Disruption of short-term memory by unattended speech: implications for the structure of working memory. J Verbal Learn Verbal Behav 21(2):150–164

    Google Scholar 

  • Salamé P, Baddeley A (1986) Phonological factors in STM: similarity and the unattended speech effect. Bull Psychon Soc 24(4):263–265

    Google Scholar 

  • Salamé P, Baddeley A (1989) Effects of background music on phonological short-term memory. Q J Exp Psychol 41(1):107–122

    Google Scholar 

  • Schaal NK, Williamson VJ, Banissy MJ (2013) Anodal transcranial direct current stimulation over the supramarginal gyrus facilitates pitch memory. Eur J Neurosci 38(10):3513–3518. https://doi.org/10.1111/ejn.12344

    Article  PubMed  Google Scholar 

  • Schaal NK, Krause V, Lange K, Banissy MJ, Williamson VJ, Pollok B (2015a) Pitch memory in nonmusicians and musicians: revealing functional differences using transcranial direct current stimulation. Cereb Cortex 25(9):2774–2782. https://doi.org/10.1093/cercor/bhu075

    Article  CAS  PubMed  Google Scholar 

  • Schaal NK, Williamson VJ, Kelly M, Muggleton NG, Pollok B, Krause V, Banissy MJ (2015b) A causal involvement of the left supramarginal gyrus during the retention of musical pitches. Cortex 64:310–317. https://doi.org/10.1016/j.cortex.2014.11.011

    Article  PubMed  Google Scholar 

  • Schiller NO, Bles M, Jansma BM (2003) Tracking the time course of phonological encoding in speech production: an event-related brain potential study. Brain Res Cogn Brain Res 17(3):819–831

    PubMed  Google Scholar 

  • Schulze K, Zysset S, Mueller K, Friederici AD, Koelsch S (2011) Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Hum Brain Mapp 32(5):771–783

    PubMed  PubMed Central  Google Scholar 

  • Shen J, Zhang G, Yao L, Zhao X (2015) Real-time fMRI training-induced changes in regional connectivity mediating verbal working memory behavioral performance. Neuroscience 289:144–152. https://doi.org/10.1016/j.neuroscience.2014.12.071

    Article  CAS  PubMed  Google Scholar 

  • Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21(1):1–10. https://doi.org/10.1007/s10548-008-0067-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25(6):1874–1881. https://doi.org/10.1111/j.1460-9568.2007.05440.x

    Article  PubMed  Google Scholar 

  • Sliwinska MW, Vitello S, Devlin JT (2014) Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course. J Visual Exp. https://doi.org/10.3791/51735

    Article  Google Scholar 

  • Stevens KN (1972) Segments, features, and analysis by synthesis

  • Tremblay P, Baroni M, Hasson U (2012) Processing of speech and non-speech sounds in the supratemporal plane: auditory input preference does not predict sensitivity to statistical structure. Neuroimage 66C:318–332. https://doi.org/10.1016/j.neuroimage.2012.10.055

    Article  Google Scholar 

  • Tremblay P, Perron M, Deschamps I, Kennedy-Higgins D, Houde J-C, Dick AS, Descoteaux M (2018) The role of the arcuate and middle longitudinal fasciculi in speech perception in noise in adulthood. Hum Brain Mapp 40(1):226–241

    PubMed  PubMed Central  Google Scholar 

  • Vines BW, Schnider NM, Schlaug G (2006) Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. NeuroReport 17(10):1047–1050. https://doi.org/10.1097/01.wnr.0000223396.05070.a2

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasserman EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Google Scholar 

  • Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: time for a New Data Presentation Paradigm. PLoS Biol. https://doi.org/10.1371/journal.pbio.1002128

    Article  PubMed  PubMed Central  Google Scholar 

  • Wig GS, Grafton ST, Demos KE, Kelley WM (2005) Reductions in neural activity underlie behavioral components of repetition priming. Nat Neurosci 8(9):1228–1233. https://doi.org/10.1038/nn1515

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908–1919

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the participants. This study was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. 435774-2013) and from the Canadian foundation for innovation (Grant No. 31408) to P.T., who also holds a Career Awards from the ‘‘Fonds de Recherche du Québec – Santé’’ (FRQS) (Grant No. 35016). Support for MRI data acquisition was provided by the “Centre intégré en neuroimagerie et neurostimulation de Québec” (CINQ) via a platform support grant from the Brain Canada Foundation (#3456). ID is currently a faculty at Georgian College in Ontario, Canada.

Author information

Authors and Affiliations

Authors

Contributions

ID: Conceptualization, Methodology, Investigation, Project administration, Formal analysis, Visualization, Writing—Original Draft. MC: Investigation, Writing—Reviewing and Editing. AD: Writing—Reviewing and Editing. PT: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Resources, Writing—Reviewing and Editing, Visualization, Data Curation.

Corresponding author

Correspondence to Pascale Tremblay.

Additional information

Communicated by Melvyn A. Goodale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deschamps, I., Courson, M., Dick, A.S. et al. The phonological loop: is speech special?. Exp Brain Res 238, 2307–2321 (2020). https://doi.org/10.1007/s00221-020-05886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05886-9

Keywords

Navigation