Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

This article was retracted on 05 September 2023

This article has been updated

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal manifestation of cognitive dysfunction. The limitation to avail a successful drug candidate encourages researchers to establish an appropriate animal model in the novel anti-AD drug discovery process. In this context, the mechanism of mitochondrial dysfunction in cognitive deficit animals is yet to be established for intracerebroventricular injection of streptozotocin (ICV-STZ). Experimental dementia was induced in male rats by ICV-STZ on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. ICV-STZ caused cognitive decline in terms of increase in the escape latency on D-14 to D-17 and, decrease in the time spent and percentage of distance travelled in the target quadrant during Morris water maze and decrease in the spontaneous alteration behavior during Y-maze tests in rats. Further, ICV-STZ decreased the level of acetylcholine and activity of choline acetyltransferase and increased the activity of acetylcholinesterase in rat hippocampus, pre-frontal cortex and amygdala. Interestingly, ICV-STZ increased the mitochondrial calcium in addition to decrease in the mitochondrial function, integrity and bioenergetics in all rat brain regions. Further, ICV-STZ enhanced the levels of expression of NR1 subunit of N-methyl-d-aspartate receptor, mitochondrial calcium uniporter and sodium-calcium exchanger in these rat brain regions. Thus, NR1-dependent mitochondrial calcium accumulation could be considered as a major attribute to the animal model of ICV-STZ-induced AD-like manifestations. Further, drugs targeting to manage mitochondrial calcium homeostasis could best be studied in this animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  • Alzheimer’s Disease International (2019) World alzheimer report 2019: attitudes to dementia. Alzheimer’s Disease International, London

    Google Scholar 

  • Agis-Torres A, Sölhuber M, Fernandez M, Sanchez-Montero JM (2014) Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for alzheimer's disease. Curr Neuropharmacol 12:2–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anekonda TS, Quinn JF (2011) Calcium channel blocking as a therapeutic strategy for Alzheimer's disease: the case for isradipine. Biochim Biophys Acta 1812:1584–1590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arora R, Deshmukh R (2017) Embelin attenuates intracerebroventricularstreptozotocin-induced behavioral, biochemical, and neurochemical abnormalities in rats. Mol Neurobiol 54:6670–6680

    Article  CAS  PubMed  Google Scholar 

  • Attia AA (2009) Histological and electron microscopic studies of the effect of beta-carotene on the pancreas of streptozotocin (STZ)-induced diabetic rats. Pak J Biol Sci 12:301–314

    Article  CAS  PubMed  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Calvo M, Sanz-Blasco S, Caballero E, Villalobos C, Núñez L (2015) Susceptibility to excitotoxicity in aged hippocampal cultures and neuroprotection by non-steroidal anti-inflammatory drugs: role of mitochondrial calcium. J Neurochem 132:403–417

    Article  CAS  PubMed  Google Scholar 

  • Chamberland S, Zamora Moratalla A, Topolnik L (2019) Calcium extrusion mechanisms in dendrites of mouse hippocampal CA1 inhibitory interneurons. Cell Calcium 77:49–57

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation VI: The effects of adenosine diphosphate on azide treated mitochondria. J BiolChem 221:477–489

    CAS  Google Scholar 

  • Chohan MO, Iqbal K (2006) From tau to toxicity: emerging roles of NMDA receptor in Alzheimer’s disease. J Alzheimers Dis 10:81–87

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, da Silva BJ, Baldissarelli J, Lenz LS, Magni LP, Rubin MA, Pillat MM, de Andrade CM (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer's-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250

    Article  PubMed  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer's disease. Am J Pathol 175:2089–2098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  • Eileen Dolan M (1997) Inhibition of DNA repair as a means of increasing the antitumor activity of DNA reactive agents. Adv Drug Deliv Rev 26:105–118

    Article  CAS  Google Scholar 

  • Garabadu D, Verma J (2019) Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Aktdependent pathway in amyloid beta (1–42)-induced cognitive deficit rats. Neurochem Int 128:39–49

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT (1991) Neuronal bioenergetic defects, excitotoxicity and Alzheimer’s disease: “use it and lose it”. Neurobiol Aging 12:334–355

    Article  CAS  PubMed  Google Scholar 

  • Grieb P (2016) IntracerebroventricularStreptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J BiolChem 260:3440–3450

    CAS  Google Scholar 

  • Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553

    Article  CAS  PubMed  Google Scholar 

  • Huang SG (2002) Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J Biomol Screen 7:383–389

    Article  CAS  PubMed  Google Scholar 

  • Phillips JB Jr, Cox BM (1997) Release of endogenous glutamate and gamma-amino butyric acid from rat striatal tissue slices measured by an improved method of high performance liquid chromatography with electrochemical detection. J Neurosci Methods 75:207–214

    Article  CAS  PubMed  Google Scholar 

  • Jee YS, Ko IG, Sung YH, Lee JW, Kim YS, Kim SE, Kim BK, Seo JH, Shin MS, Lee HH, Cho HJ, Kim CJ (2008) Effects of treadmill exercise on memory and c-Fos expression in the hippocampus of the rats with intracerebroventricular injection of streptozotocin. Neurosci Lett 443:188–192

    Article  CAS  PubMed  Google Scholar 

  • Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS (2016) Streptozotocinintracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer's disease (sAD)-like pathology. Mol Neurobiol 53:4548–4562

    Article  CAS  PubMed  Google Scholar 

  • Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969

    Article  CAS  PubMed  Google Scholar 

  • Knezovic A, Loncar A, Homolak J, Smailovic U, Osmanovic Barilar J, Ganoci L, Bozina N, Riederer P, Salkovic-Petrisic M (2017) Rat brain glucose transporter-2, insulin receptor and glial expression are acute targets of intracerebroventricular streptozotocin: risk factors for sporadic Alzheimer's disease? J Neural Transm (Vienna) 124:695–708

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Bansal N (2018) Fasudil hydrochloride ameliorates memory deficits in rat model of streptozotocin-induced Alzheimer’s disease: Involvement of PI3-kinase, eNOS and NFκB. Behav Brain Res 351:4–16

    Article  CAS  PubMed  Google Scholar 

  • Labak M, Foniok T, Kirk D, Rushforth D, Tomanek B, Jasiński A, Grieb P (2010) Metabolic changes in rat brain following intracerebroventricular injections of streptozotocin: a model of sporadic Alzheimer's disease. Acta Neurochir Suppl 106:177–181

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A (2008) Increased intraneuronal resting [Ca2+] in adult Alzheimer's disease mice. J Neurochem 105:262–271

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J BiolChem 193:265–275

    CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Barker SSJJL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  CAS  PubMed  Google Scholar 

  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  CAS  PubMed  Google Scholar 

  • Mehla J, Pahuja M, Gupta YK (2013) Streptozotocin-induced sporadic Alzheimer's disease: selection of appropriate dose. J Alzheimers Dis 33:17–21

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Mouri A, Noda Y, Hara H, Mizoguchi H, Tabira T, Nabeshima T (2007) Oral vaccination with a viral vector containing AbetacDNA attenuates age-related Abeta accumulation and memory deficits without causing inflammation in a mouse Alzheimer model. FASEB J 21:2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Muthuraju S, Maiti P, Solanki P, Sharma AK, Amitabh Singh SB, Prasad D, Ilavazhagan G (2009) Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav Brain Res 203:1–14

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn, National Academies Press (US), Washington.

  • Nazem A, Mansoori GA (2008) Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 13:199–223

    Article  CAS  PubMed  Google Scholar 

  • Newpher TM, Ehlers MD (2008) Glutamate receptor dynamics in dendritic microdomains. Neuron 58:472–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G, Germain MA, Bourdel G, Popovic N, Rezende FA, Kaufman RJ, Mallette FA, Sapieha P (2016) Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med 8:362ra144

    Article  PubMed  Google Scholar 

  • Paviolo NS, Santiñaque FF, Castrogiovanni DC, Folle GA, Bolzán AD (2015) The methylating agent streptozotocin induces persistent telomere dysfunction in mammalian cells. Mutat Res Genet Toxicol Environ Mutagen 794:17–24

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Pedersen PL, Greenawalt JW, Reynafarje B, Hullihen J, Decker GL, Soper JW et al (1978) Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol 20:411–481

    Article  CAS  PubMed  Google Scholar 

  • Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65:859–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prakash A, Kalra JK, Kumar A (2015) Neuroprotective effect of N-acetyl cysteine against streptozotocin-induced memory dysfunction and oxidative damage in rats. J Basic Clin Physiol Pharmacol 26:13–23

    Article  CAS  PubMed  Google Scholar 

  • Prasad KN (2017) Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer's disease. Mech Ageing Dev 162:63–71

    Article  CAS  PubMed  Google Scholar 

  • Prickaerts J, Fahrig T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin; a correlation analysis. Behav Brain Res 102:73–88

    Article  CAS  PubMed  Google Scholar 

  • Raza H, John A (2012) Streptozotocin-induced cytotoxicity, oxidative stress and mitochondrial dysfunction in human hepatoma HepG2 cells. Int J Mol Sci 13:5751–5767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez E, Rivera I, Astorga S, Mendoza E, García F, Hernández-Echeagaray E (2010) Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage. Int J Biol Sci 6:199–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Sabbagh JJ, Kinney JW, Cummings JL (2013) Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol Aging 34:169–183

    Article  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    CAS  Google Scholar 

  • Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer PJ (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer's disease, about the therapeutic strategies in Alzheimer's research. J Neural Transm (Vienna) 120:233–252

    Article  CAS  PubMed  Google Scholar 

  • Scearce-Levie K, Sanchez PE, Lewcock JW (2020) Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 19:447–462

    Article  CAS  PubMed  Google Scholar 

  • Sonkusare S, Srinivasan K, Kaul C, Ramarao P (2005) Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricularstreptozotocin in rats. Life Sci 77:1–14

    Article  CAS  PubMed  Google Scholar 

  • Strokin M, Reiser G (2016) Mitochondrial Ca(2+) processing by a unit of mitochondrial Ca(2+) uniporter and Na(+)/Ca(2+) exchanger supports the neuronal Ca(2+) influx via activated glutamate receptors. Neurochem Res 41:1250–1262

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RH (2011) Brain aging, Alzheimer’s disease, and mitochondria. BiochimBiophysActa 1812:1630–1639

    CAS  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20:S265–S279

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I (2018) Crosslink between calcium and sodium signalling. Exp Physiol 103:157–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee H, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842:1240–1247

    Article  CAS  PubMed  Google Scholar 

  • Wightman EL (2017) Potential benefits of phytochemicals against Alzheimer's disease. Proc Nutr Soc 76:106–112

    Article  PubMed  Google Scholar 

  • Woo K (2000) Is vitamin E the magic bullet for the treatment of Alzheimer's disease (AD)? Perspectives 24:7–10

    CAS  PubMed  Google Scholar 

  • Zappa Villar MF, LópezHanotte J, Falomir Lockhart E, Trípodi LS, Morel GR, Reggiani PC (2018) Intracerebroventricularstreptozotocin induces impaired Barnes maze spatial memory and reduces astrocyte branching in the CA1 and CA3 hippocampal regions. J Neural Transm (Vienna) 125:1787–1803

    Article  CAS  PubMed  Google Scholar 

  • Zoukhri D, Kublin CL (2001) Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of sjögren's syndrome. Invest Ophthalmol Vis Sci 42:925–932

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

YS is thankful to GLA University, Mathura, Uttar Pradesh, India for the financial assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debapriya Garabadu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Sreedharan Sajikumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s00221-023-06700-y

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, Y., Garabadu, D. RETRACTED ARTICLE: Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp Brain Res 238, 2293–2306 (2020). https://doi.org/10.1007/s00221-020-05896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05896-7

Keywords

Navigation