Skip to main content

Advertisement

Log in

Performance analysis of a PV/HKT/WT/DG hybrid autonomous grid

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the performance of a renewable autonomous hybrid grid composed of photovoltaic system, wind turbines, hydrokinetic turbines, diesel generator and energy storage systems. Three energy dispatch control and several storage systems have been studied. Technical, environmental and economic indicators have been used to determine the impact on the hybrid autonomous grid and its sizing optimization. However, this study goes further by conducting a sensitivity analysis such as capital cost, state of charge and time step, to choose the best system configuration. The results show that, when using the energy storage system composed of pumped hydro, under the load following energy dispatch control, the net present cost and cost of energy are lower with respect to others storage technologies proposed. However, the storage system with the lowest CO2 emissions is lead acid battery using the combined cycle energy dispatch control. In addition, the wind turbines have presented the greatest sensibility in the net present cost with respect to the capital cost variation and pumped hydro-storage present sensitivity response with respect to state of charge. All configurations have different several behaviors, therefore, the advantages and disadvantages of each one are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\( Y_{\text{PV}} \) :

Rated capacity of the PV array (kW)

\( f_{\text{PV}} \) :

PV derating factor (%)

\( \bar{G}_{\text{T}} \) :

Solar radiation incident on the PV array (kW/m2)

\( \bar{G}_{\text{T, STC}} \) :

Incident radiation at standard test conditions (kW/m2)

\( \alpha_{\text{P}} \) :

Temperature coefficient of power (%/°C)

\( T_{\text{c}} \) :

PV cell temperature (°C)

\( T_{\text{c,STC}} \) :

PV cell temperature under standard test conditions (°C)

\( \rho w \) :

Water density (kg/m3)

\( P_{\text{HKT}} \) :

Power of the hydrokinetic turbine (kW)

\( C_{\text{p,H}} \) :

Performance coefficient combined of the hydrokinetic turbine

\( \eta_{\text{HKT}} \) :

Hydrokinetic generator efficiency (%)

\( A \) :

Hydrokinetic area (m2)

\( v \) :

Water flow velocity (m/s)

\( t \) :

Parameter representing time (s)

\( E_{\text{HKT}} \) :

Hydrokinetic energy (kWh)

\( P_{\text{HKT}} \) :

Hydrokinetic power (kW)

\( P_{\text{rated}} \) :

Nominal power limit of the wind turbine (kW)

\( k_{1} \) :

Constant represents dimensions of a wind turbine

\( \rho \) :

Air density (kg/m3)

\( R \) :

Rotor radius (m)

\( C_{\text{p}} \) :

Power coefficient of the wind turbine

\( v_{i} \) :

Wind speed (m/s)

\( F \) :

Fuel consumption coefficient

\( F_{0} \) :

Intercept coefficient of the fuel curve

\( F_{1} \) :

Fuel curve slope coefficient

\( Y_{\text{dg}} \) :

Nominal capacity of the diesel generator (kW)

\( P_{\text{dg}} \) :

Electrical power of diesel generator (kW)

\( {\text{DF}} \) :

Ratio of power generation of the supplementary primary motors to the total start–stop (kWh/start–stop/year)

\( N_{\text{s/s}} \) :

Number of starts and stops of diesel generator

\( Q_{1} \left( t \right) \) :

Energy available at the beginning of the operating interval and above the minimum state of charge in batteries (kWh)

\( Q\left( t \right) \) :

Total energy in batteries at the beginning of the passage of time (kWh)

\( c \) :

Ratio of the storage capacity of each energy storage system

\( k \) :

Constant energy storage rate

\( \Delta t \) :

Time interval (s)

\( E \) :

Energy stored in supercapacitor (J)

\( C \) :

Capacitance (F)

\( V \) :

Super capacitor voltage (V)

\( E_{\text{PH}} \) :

Energy stored of pumped storage system (J)

\( V_{\text{res}} \) :

Volume of the reservoir (m3)

\( h_{\text{head}} \) :

Head height (m)

\( \eta \) :

Efficiency of the energy conversion in pumped storage system (%)

\( P_{0} \left( t \right) \) :

Power output of the inverter (kW)

\( P_{\text{i}} \left( t \right) \) :

Input power of the inverter (kW)

\( \eta_{\text{inv}} \) :

Efficiency of the inverter (%)

\( C_{\text{ann,tot}} \) :

Total annualized cost of the system ($/year)

\( E_{\text{s}} \) :

Total energy served (kWh/year)

\( N \) :

Life expectancy of each component

\( i \) :

Annual real interest

\( C_{\text{cap}} \) :

Initial capital cost ($)

\( n \) :

Number of devices in the system

\( C_{{{\text{O}}\& {\text{Mj}}}} \) :

Operation and maintenance cost for each component ($)

\( C_{\text{f}} \) :

Total annual fuel cost ($)

\( C_{{{\text{R}},i}} \) :

Cost replacement for each component ($)

TAC:

Total annualized cost of each component ($/year)

CRF:

Capital recovery factor

NPC:

Net present cost ($)

COE:

Cost of energy ($/kWh)

WT:

Wind turbine

HKT:

Hydrokinetic turbine

PV:

Photovoltaic system

LAB:

Lead acid batteries

Li-ion:

Lithium ion

VRF:

Vanadium redox flow

PH:

Pumped hydro-storage system

ESS:

Energy storage system

SC:

Supercapacitor

DG:

Diesel generator

SOC:

Energy storage system state of charge

CC:

Cycle charge control

LF:

Load following control

CD:

Combined dispatch control

References

  1. Vermaak HJ, Kusakana K, Koko SP (2014) Status of micro-hydrokinetic river technology in rural applications: a review of literature. Renew Sustain Energy Rev 29:625–633. https://doi.org/10.1016/J.RSER.2013.08.066

    Article  Google Scholar 

  2. Castañeda M, Cano A, Jurado F, Sánchez H, Fernández LM (2013) Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system. Int J Hydrogen Energy 38(10):3830–3845. https://doi.org/10.1016/J.IJHYDENE.2013.01.080

    Article  Google Scholar 

  3. Choi C et al (2017) A review of vanadium electrolytes for vanadium redox flow batteries. Renew Sustain Energy Rev 69:263–274. https://doi.org/10.1016/j.rser.2016.11.188

    Article  Google Scholar 

  4. AlBusaidi AS, Kazem HA, Al-Badi AH, FarooqKhan M (2016) A review of optimum sizing of hybrid PV–wind renewable energy systems in oman. Renew Sustain Energy Rev 53:185–193. https://doi.org/10.1016/j.rser.2015.08.039

    Article  Google Scholar 

  5. Kaabeche A, Bakelli Y (2019) Renewable hybrid system size optimization considering various electrochemical energy storage technologies. Energy Convers Manag 193:162–175. https://doi.org/10.1016/J.ENCONMAN.2019.04.064

    Article  Google Scholar 

  6. Krishan O, Suhag S (2019) A novel control strategy for a hybrid energy storage system in a grid-independent hybrid renewable energy system. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12262

    Article  Google Scholar 

  7. Priyadarshi N, Padmanaban S, Bhaskar MS, Blaabjerg F, Holm-Nielsen JB (2019) An improved hybrid PV-wind power system with MPPT for water pumping applications. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12210

    Article  Google Scholar 

  8. Lata-García J, Jurado F, Fernández-Ramírez LM, Sánchez-Sainz H (2018) Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery. Energy 159:611–620. https://doi.org/10.1016/j.energy.2018.06.183

    Article  Google Scholar 

  9. Lata-Garcia J, Jurado-Melguizo F, Sanchez-Sainz H, Reyes-Lopez C, Fernandez-Ramirez L (2018) Optimal sizing hydrokinetic-photovoltaic system for electricity generation in a protected wildlife area of Ecuador. Turk J Electr Eng Comput Sci 26(2):1103–1114. https://doi.org/10.3906/elk-1706-23

    Article  Google Scholar 

  10. Kusakana K (2015) Optimization of the daily operation of a hydrokinetic–diesel hybrid system with pumped hydro storage. Energy Convers Manag 106:901–910. https://doi.org/10.1016/J.ENCONMAN.2015.10.021

    Article  Google Scholar 

  11. Koko SP, Kusakana K, Vermaak HJ (2018) Optimal power dispatch of a grid-interactive micro-hydrokinetic-pumped hydro storage system. J Energy Storage 17:63–72. https://doi.org/10.1016/J.EST.2018.02.013

    Article  Google Scholar 

  12. Das BK, Zaman F (2019) Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: effects of dispatch strategies, batteries, and generator selection. Energy 169:263–276. https://doi.org/10.1016/j.energy.2018.12.014

    Article  Google Scholar 

  13. Ghorbanzadeh M, Astaneh M, Golzar F (2019) Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems. Energy 166:1194–1206. https://doi.org/10.1016/j.energy.2018.10.120

    Article  Google Scholar 

  14. Charles RG, Davies ML, Douglas P, Hallin IL, Mabbett I (2019) Sustainable energy storage for solar home systems in rural Sub-Saharan Africa—a comparative examination of lifecycle aspects of battery technologies for circular economy, with emphasis on the South African context. Energy 166:1207–1215. https://doi.org/10.1016/j.energy.2018.10.053

    Article  Google Scholar 

  15. Hajiaghasi S, Salemnia A, Hamzeh M (2019) Hybrid energy storage system for microgrids applications: a review. J Energy Storage 21:543–570. https://doi.org/10.1016/j.est.2018.12.017

    Article  Google Scholar 

  16. Liu C, Wang Y, Chen Z (2019) Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system. Energy 166:796–806. https://doi.org/10.1016/J.ENERGY.2018.10.131

    Article  Google Scholar 

  17. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40. https://doi.org/10.1016/J.ELECTACTA.2012.09.067

    Article  Google Scholar 

  18. Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335. https://doi.org/10.1016/J.RSER.2013.08.001

    Article  Google Scholar 

  19. Das BK, Al-Abdeli YM, Woolridge M (2019) Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance. Energy 168:57–69. https://doi.org/10.1016/j.energy.2018.11.033

    Article  Google Scholar 

  20. Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596. https://doi.org/10.1016/J.RSER.2014.10.011

    Article  Google Scholar 

  21. Abdelkader A, Rabeh A, MohamedAli D, Mohamed J (2018) Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage. Energy 163:351–363. https://doi.org/10.1016/j.energy.2018.08.135

    Article  Google Scholar 

  22. Chong LW, Wong YW, Rajkumar RK, Isa D (2016) An optimal control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system. J Power Sour 331:553–565. https://doi.org/10.1016/J.JPOWSOUR.2016.09.061

    Article  Google Scholar 

  23. Chen C-L, Chen H-C, Lee J-Y (2016) Application of a generic superstructure-based formulation to the design of wind-pumped-storage hybrid systems on remote islands. Energy Convers Manag 111:339–351. https://doi.org/10.1016/J.ENCONMAN.2015.12.057

    Article  Google Scholar 

  24. Arévalo P, Benavides D, Lata-García J, Jurado F (2019) Energy control and size optimization of a hybrid system (photovoltaic-hidrokinetic) using various storage technologies. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2019.101773

    Article  Google Scholar 

  25. Ammari C, Hamouda M, Makhloufi S (2019) Comparison between three hybrid system PV/wind turbine/diesel generator/battery using HOMER PRO Software, pp 227–237

  26. Barreiro-Gomez J, Ocampo-Martinez C, Bianchi F, Quijano N (2019) Data-driven decentralized algorithm for wind farm control with population-games assistance. Energies 12(6):1164. https://doi.org/10.3390/en12061164

    Article  Google Scholar 

  27. Bianchi D, Battista H, Mantz RJ (2006) Wind turbine control systems: principles, modelling and gain scheduling design. In: Advances in industrial control, POD, Springer

  28. Khalid F, Dincer I, Rosen MA (2017) Thermoeconomic analysis of a solar-biomass integrated multigeneration system for a community. Appl Therm Eng 120:645–653. https://doi.org/10.1016/J.APPLTHERMALENG.2017.03.040

    Article  Google Scholar 

  29. Askarzadeh A (2017) Distribution generation by photovoltaic and diesel generator systems: energy management and size optimization by a new approach for a stand-alone application. Energy 122:542–551. https://doi.org/10.1016/j.energy.2017.01.105

    Article  Google Scholar 

  30. Luta DN, Raji AK (2019) Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications. Energy 166:530–540. https://doi.org/10.1016/j.energy.2018.10.070

    Article  Google Scholar 

  31. Rathore A, Patidar NP (2019) Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-wind based standalone microgrid. Int J Electr Power Energy Syst 106:17–32. https://doi.org/10.1016/J.IJEPES.2018.09.030

    Article  Google Scholar 

  32. Cheng C, Blakers A, Stocks M, Lu B (2019) Pumped hydro energy storage and 100% renewable electricity for East Asia. Glob Energy Interconnect 2(5):386–392. https://doi.org/10.1016/j.gloei.2019.11.013

    Article  Google Scholar 

  33. Bhayo BA, Al-Kayiem HH, Gilani SIU, Ismail FB (2020) Power management optimization of hybrid solar photovoltaic-battery integrated with pumped-hydro-storage system for standalone electricity generation. Energy Convers Manag 215:112942. https://doi.org/10.1016/j.enconman.2020.112942

    Article  Google Scholar 

  34. HOMER CALCULATIONS. https://www.homerenergy.com/products/pro/docs/3.11/homers_calculations.html. Accessed 08 Feb 2019

  35. HaghighatMamaghani A, AvellaEscandon SA, Najafi B, Shirazi A, Rinaldi F (2016) Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renew Energy 97:293–305. https://doi.org/10.1016/j.renene.2016.05.086

    Article  Google Scholar 

  36. Das HS, Tan CW, Yatim AHM, Lau KY (2017) Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renew Sustain Energy Rev 76:1332–1347. https://doi.org/10.1016/j.rser.2017.01.174

    Article  Google Scholar 

  37. Adaramola MS, Paul SS, Oyewola OM (2014) Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy Sustain Dev 19(1):72–82. https://doi.org/10.1016/j.esd.2013.12.007

    Article  Google Scholar 

  38. Ngan MS, Tan CW (2012) Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular, Malaysia. Renew Sustain Energy Rev 16(1):634–647. https://doi.org/10.1016/j.rser.2011.08.028

    Article  Google Scholar 

  39. Mandal S, Das BK, Hoque N (Nov. 2018) Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. J Clean Prod 200:12–27. https://doi.org/10.1016/j.jclepro.2018.07.257

    Article  Google Scholar 

  40. Hossain M, Mekhilef S, Olatomiwa L (2017) Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustain Cities Soc 28:358–366. https://doi.org/10.1016/j.scs.2016.10.008

    Article  Google Scholar 

  41. Khan MJ, Yadav AK, Mathew L (2017) Techno economic feasibility analysis of different combinations of PV-wind-diesel-battery hybrid system for telecommunication applications in different cities of Punjab, India. Renew Sustain Energy Rev 76:577–607. https://doi.org/10.1016/j.rser.2017.03.076

    Article  Google Scholar 

  42. Shezan SA et al (2016) Performance analysis of an off-grid wind-PV (photovoltaic)-diesel-battery hybrid energy system feasible for remote areas. J Clean Prod 125:121–132. https://doi.org/10.1016/j.jclepro.2016.03.014

    Article  Google Scholar 

  43. Yilmaz S, Dincer F (2017) Optimal design of hybrid PV-diesel-battery systems for isolated lands: a case study for Kilis, Turkey. Renew Sustain Energy Rev 77:344–352. https://doi.org/10.1016/j.rser.2017.04.037

    Article  Google Scholar 

  44. Rohani G, Nour M (2014) Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates. Energy 64:828–841. https://doi.org/10.1016/j.energy.2013.10.065

    Article  Google Scholar 

  45. Tontekpower “generadores diesel”. http://www.tontekpower.com/es/diesel-generators. Accessed 08 Apr 2019

  46. Solar Panels|SunPower. https://us.sunpower.com/products/solar-panels. Accessed 08 Apr 2019

  47. SIEMENS, Wind Generators|Energy generation|Siemens. https://new.siemens.com/global/en/markets/wind/equipment/energy-generation/windgenerators.html. Accessed 08 Oct 2019

  48. EnerSys-Hawker Motive Power—Europe—Products. http://www.enersys-hawker.com/english/products.asp?lang=e. Accessed 08 May 2019

  49. Smart Hydro Power, “Smart Hydro Power” (2019). https://www.smart-hydro.de/es/sistemas-de-energia-renovable/turbinas-para-rios-y-canales/. Accessed 15 Jan 2019

  50. Product|BloombergNEF|Bloomberg Finance LP. https://about.bnef.com/product/. Accessed 08 May 2019

  51. HID EUROPE. https://www.hid-europe.com/. Accessed 08 May 2019

  52. Indrivetec AG products|energy storage systems. https://www.indrivetec.com/en_US/. Accessed 18 Apr 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jurado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arévalo, P., Jurado, F. Performance analysis of a PV/HKT/WT/DG hybrid autonomous grid. Electr Eng 103, 227–244 (2021). https://doi.org/10.1007/s00202-020-01065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01065-9

Keywords

Navigation