Skip to main content
Log in

Life-Cycle Evaluation of Anisotropic Particle-Based Magnetorheological Fluid in MR Brake Performance

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The work reports the life-cycle test of flake-shaped particle-based magnetorheological (MR) fluid using the MR brake system and evaluated the performance of brake. The choice of the application is based on the understanding that normal force in this case is zero and the same is not true for other applications. Thus, it will exhibit only shear-induced deformation/degradation of MR fluid properties. The test was performed under a constant magnetic field for 105 cycles at 300 rpm. The MR fluid collected after cyclic operation exhibits no change in surface morphology as well as MR properties. Thus, the torque transmission even after this cycle remains the same. This is not the same when commercially available spherical particle-based MR fluid is used. There is a decrement in the torque transmission of MR brake by ~ 30%. The results are discussed on the basis of MR effect and the change in surface morphology of particles. The results confirm that the use of flake-shaped-based MR fluid gives better performance when used for long-term application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and applications of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct. 10(1), 5–13 (1999). https://doi.org/10.1177/1045389X9901000102

    Article  Google Scholar 

  2. B.D. Chin, J.H. Park, M.H. Kwon, O.O. Park, Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol. Acta 40(3), 211–219 (2001). https://doi.org/10.1007/s003970000150

    Article  Google Scholar 

  3. J.D. Carlson, in Electrorheological Fluids and Magnetorheological Suspensions. What makes a good MR fluid? (2002), pp. 63–69. https://doi.org/10.1106/104538902028221

    Chapter  Google Scholar 

  4. I.B. Jang, H.B. Kim, J.Y. Lee, J.L. You, H.J. Choi, M.S. Jhon, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J Appl. Phys. 97(10), 10Q912 (2005). https://doi.org/10.1063/1.1853835

    Article  Google Scholar 

  5. J. De Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: A review. Soft Matter 7(8), 3701–3710 (2011). https://doi.org/10.1039/C0SM01221A

    Article  ADS  Google Scholar 

  6. N. Wereley (ed.), Magnetorheology: Advances and applications, vol 6 (Royal Society of Chemistry, London, 2013)

    Google Scholar 

  7. P.L. Wong, W.A. Bullough, C. Feng, S. Lingard, Tribological performance of a magneto-rheological suspension. Wear 247(1), 33–40 (2001). https://doi.org/10.1016/S0043-1648(00)00507-X

    Article  Google Scholar 

  8. J. De Vicente, J. Ramírez, Effect of friction between particles in the dynamic response of model magnetic structures. J. Colloid Interface Sci. 316(2), 867–876 (2007). https://doi.org/10.1016/j.jcis.2007.08.022

    Article  ADS  Google Scholar 

  9. C.H. Lee, D.W. Lee, J.Y. Choi, S.B. Choi, W.O. Cho, H.C. Yun, Tribological characteristics modification of magnetorheological fluid. J. Tribol. 133(3) (2011). https://doi.org/10.1115/1.4004106

  10. D. Utami, S.A. Mazlan, F. Imaduddin, N.A. Nordin, I. Bahiuddin, A. Aziz, S.B. Choi, Material characterization of a magnetorheological fluid subjected to long-term operation in damper. Materials 11(11), 2195 (2018). https://doi.org/10.3390/ma11112195

    Article  ADS  Google Scholar 

  11. B.K. Kumbhar, S.R. Patil, S.M. Sawant, Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application. Eng. Sci. Technol. Int. J. 18(3), 432–438 (2015). https://doi.org/10.1016/j.jestch.2015.03.002

    Article  Google Scholar 

  12. C. Sarkar, H. Hirani, Synthesis and characterization of antifriction magnetorheological fluids for brake. Def. Sci. J. 63(4), 408–412 (2013). https://doi.org/10.14429/dsj.63.2633

    Article  Google Scholar 

  13. R.V. Upadhyay, Steady shear rheology and magnetic properties of flake-shaped iron particle-based MR fluid: Before and after tribology study. Braz. J. Phys. 49(6), 820–828 (2019). https://doi.org/10.1007/s13538-019-00711-3

    Article  ADS  Google Scholar 

  14. LORD Data sheet. www.lordmrstore.com/_literature_231215/data_sheet_-_mrf-132dg_magneto-rheological_fluid. Accessed 18 April 2020

  15. R. Jacob, U.S. Patent No. 2,575,360. (1951) Washington, DC: U.S. Patent and Trademark Office.

  16. W.H. Li, H. Du, Design and experimental evaluation of a magnetorheological brake. Int. J. Adv. Manuf. Technol. 21(7), 508–515 (2003). https://doi.org/10.1007/s001700300060

    Article  Google Scholar 

  17. D.Y. Lee, N.M. Wereley, Quasi-steady Herschel-Bulkley analysis of electro and magneto-rheological flow mode dampers. J. Intell. Mater. Syst. Struct. 10(10), 761–769 (1999). https://doi.org/10.1106/E3LT-LYN6-KMT2-VJJD

    Article  Google Scholar 

  18. Q.H. Nguyen, S.B. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat. Smart Mater. Struct. 19(11), 115024 (2010). https://doi.org/10.1088/0964-1726/19/11/115024

    Article  ADS  Google Scholar 

  19. Z. Laherisheth, R.V. Upadhyay, Temperature dependence quasi-static measurements on a magnetorheological fluid having plate-like iron particles as dispersed phase. J. Intell. Mater. Syst. Struct. 27(10), 1329–1336 (2016). https://doi.org/10.1177/1045389X15590271

    Article  Google Scholar 

  20. S.R. Patel, D.M. Patel, R.V. Upadhyay, Performance enhancement of MR brake using flake-shaped iron-particle–based magnetorheological fluid. J. Test. Eval. 48(3), 20190794 (2020). https://doi.org/10.1520/JTE20190794

    Article  Google Scholar 

  21. W.H. Kim, J.H. Park, G.W. Kim, C.S. Shin, S.B. Choi, Durability investigation on torque control of a magneto-rheological brake: Experimental work. Smart Mater. Struct. 26(3), 037001 (2017). https://doi.org/10.1088/1361-665X/aa59d8

    Article  ADS  Google Scholar 

  22. J.M. Ginder, L.C. Davis, L.D. Elie, Rheology of magnetorheological fluids: Models and measurements. Int. J. Mod. Phys. B 10(23n24), 3293–3303 (1996). https://doi.org/10.1142/S0217979296001744

    Article  ADS  Google Scholar 

  23. F.F. Fang, Y.D. Liu, H.J. Choi, Y. Seo, Core–shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS Appl. Mater. Interfaces 3(9), 3487–3495 (2011). https://doi.org/10.1021/am200714p

    Article  Google Scholar 

  24. M.W. Kim, W.J. Han, Y.H. Kim, H.J. Choi, Effect of a hard magnetic particle additive on rheological characteristics of microspherical carbonyl iron-based magnetorheological fluid. Colloids Surf. A Physicochem. Eng. Asp. 506, 812–820 (2016). https://doi.org/10.1016/j.colsurfa.2016.07.070

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CHARUSAT for providing all technical assistance and testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh V. Upadhyay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.R., Upadhyay, R.V. & Patel, D.M. Life-Cycle Evaluation of Anisotropic Particle-Based Magnetorheological Fluid in MR Brake Performance. Braz J Phys 50, 525–533 (2020). https://doi.org/10.1007/s13538-020-00781-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00781-8

Keywords

Navigation