Issue 9, 2020

A chondroprotective effect of moracin on IL-1β-induced primary rat chondrocytes and an osteoarthritis rat model through Nrf2/HO-1 and NF-κB axes

Abstract

Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration and inflammation. Although moracin is known to play a role in anti-inflammation and anti-oxidation in several inflammatory diseases, its anti-inflammatory effect on OA remains largely unknown. Therefore, in order to explore the role of moracin in OA, we investigated the anti-inflammatory effect of moracin on interleukin (IL)-β-induced rat chondrocytes in vitro and surgically induced OA rat models in vivo. Rat chondrocytes were pretreated using moracin (0, 5, 10, 15 μmol L−1) and then stimulated with IL-β (10 ng ml−1). Results showed that moracin reduced the expression of IL-1β-induced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 in both rat chondrocytes and cell culture supernatants. Besides, IL-1β-induced degradation of aggrecan and collage II, and the high expression of matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS)-5 were also reversed by moracin. Moreover, moracin inhibited the translocation of p65 from the cytoplasm to nucleus induced by IL-1β and activated the Nrf2/HO-1 signaling pathway in chondrocytes. In OA rat models, moracin prevented cartilage of rats from destruction. All these findings above indicated that moracin could be a potentially effective drug for treating OA.

Graphical abstract: A chondroprotective effect of moracin on IL-1β-induced primary rat chondrocytes and an osteoarthritis rat model through Nrf2/HO-1 and NF-κB axes

Article information

Article type
Paper
Submitted
08 Jun 2020
Accepted
27 Jul 2020
First published
29 Jul 2020

Food Funct., 2020,11, 7935-7945

A chondroprotective effect of moracin on IL-1β-induced primary rat chondrocytes and an osteoarthritis rat model through Nrf2/HO-1 and NF-κB axes

S. Zhou, J. Shi, H. Wen, W. Xie, X. Han and H. Li, Food Funct., 2020, 11, 7935 DOI: 10.1039/D0FO01496F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements