Issue 9, 2020

Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity

Abstract

Acetaminophen (APAP) is one of the safest and most effective over-the-counter (OTC) analgesics and antipyretics, but excessive doses of APAP will induce hepatotoxicity with high morbidity and mortality worldwide. Kaempferol (KA), a flavonoid compound derived from the medicinal and edible plant of Penthorum chinense Pursh, has been reported to exert a profound anti-inflammatory and antioxidant activity. In this study, we explored the protective effect and novel mechanism of KA against APAP-induced hepatotoxicity. The results revealed that KA pretreatment significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), relieved hepatocellular damage and apoptosis, attenuated the exhaustion of glutathione (GSH) and accumulation of malondialdehyde (MDA), increased the expression of antioxidative enzymes (e.g., heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1)), and thus restrained APAP-induced oxidative damage in the liver. KA suppressed the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Moreover, KA remarkably inhibited high-mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) expression as well as nuclear factor kappa-B (NF-κB) activation for liver protection against APAP-induced inflammatory responses and apoptosis. Taken together, our findings suggested that KA could effectively protect hepatocytes from APAP hepatotoxicity through the up-regulation of HO-1 and NQO1 expression, the down-regulation of NLRP3 expression, and the inhibition of the HMGB1/TLR4/NF-κB signaling pathway.

Graphical abstract: Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity

Article information

Article type
Paper
Submitted
19 Mar 2020
Accepted
29 Jul 2020
First published
29 Jul 2020

Food Funct., 2020,11, 7925-7934

Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity

Y. Du, L. Lai, H. Zhang, F. Zhong, H. Cheng, B. Qian, P. Tan, X. Xia and W. Fu, Food Funct., 2020, 11, 7925 DOI: 10.1039/D0FO00724B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements