Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Piperazine-immobilized polymeric membranes for CO2 capture: mechanism of preferential CO2 permeation

Abstract

Amines are incorporated into various membranes to improve their CO2 separation performance. With amine-containing polymeric membranes, gas transport properties are often enhanced under humidity, where CO2 migrates through the membranes in the form of bicarbonate ions. Piperazine (Pz) and its derivatives are known to catalyze the conversion of CO2 to bicarbonate ions and have been used in liquid amine scrubbing technology. Piperazines were immobilized in poly(vinyl alcohol) (PVA), and the resulting polymeric membranes showed high CO2 separation performance over H2 and CH4. The gas transport properties were dependent on the chemical structure of the amines. In particular, 3-(1-piperazinyl)-1,2-propanediol (PzPD)-containing polymeric membranes gave excellent CO2 separation performance, and the CO2 permeability and CO2 selectivity over CH4 were 1060 Barrer and 370, respectively, at 50 °C and 90% relative humidity with a transmembrane CO2 pressure of 11 kPa. The interaction between PzPD and CO2 was quantitatively studied by inverse-gate decoupling 13C NMR spectroscopy. CO2 interacted with the secondary amino group on the Pz ring to form a carbamate, which was readily hydrolyzed to produce bicarbonate ions. The hydroxyl group on the C2 carbon of PzPD facilitated the interaction between CO2 and the amine through hydrogen bonding, resulting in enhanced diffusivity of CO2 in the membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mets B, Davidson O, de Coninck H, Loos M, Meyer L. Carbon dioxide capture and storage. Cambridge: Cambridge University Press; 2005.

  2. Styring P, Quadrelli EA, Armstrong K. Carbon dioxide utilization: closing the carbon cycle. New York: Elsevier; 2014.

  3. Bui M, MacDowell N, Carbon Capture and storage. Cambridge: Royal Society of Chemistry; 2019.

  4. 20 Years of carbon capture and storage. International Energy Agency. 2016. https://webstore.iea.org/20-years-of-carbon-capture-and-storage. Accessed 5 Dec 2016.

  5. Taniguchi I, Itaoka K. CO2 capture, transportation, and storage technology. In: Kato Y, Koyama M, Fukushima Y, Nakagaki T, editors. Energy technology roadmaps of Japan. Tokyo: Springer; 2016. p. 343–58.

  6. Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD. 50th Anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules. 2017;50:7809–43.

    Article  CAS  Google Scholar 

  7. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, et al. Progress in carbon dioxide separation and capture: a review. J Environ Sci. 2008;20:14–27.

    Article  CAS  Google Scholar 

  8. Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IFJ. Membrane-based technologies for biogas separations. Chem Soc Rev. 2010;39:750–68.

    Article  CAS  Google Scholar 

  9. Wang S, Li X, Wu H, Tian Z, Xin Q, He G, et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci. 2016;9:1863–90.

    Article  CAS  Google Scholar 

  10. Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, et al. Recent developments in membranes for efficient hydrogen purification. J Membr Sci. 2015;495:130–68.

    Article  CAS  Google Scholar 

  11. Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev. 2015;44:2421–54.

    Article  CAS  Google Scholar 

  12. Kim SJ, Jeon H, Kim DJ, Kim JH. P25/PVC-g-POEM mixed matrix membranes with simultaneously improved permeability and selectivity for CO2/N2 separation. Polymer. 2016;40:238–44.

    CAS  Google Scholar 

  13. Merkel T. Pilot testing of a membrane system for post-combustion CO2 capture. US Department of Energy Office of Scientific and Technical Information. https://www.osti.gov/servlets/purl/1337555. Accessed 12 Dec 2019.

  14. Han Y, Salim W, Chen KK, Wu D, Ho WSW. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J Membr Sci. 2019;575:242–51.

    Article  CAS  Google Scholar 

  15. Merkel T, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci. 2010;359:126–39.

    Article  CAS  Google Scholar 

  16. Chen Y, Ho WSW. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. J Membr Sci. 2016;514:376–84.

    Article  CAS  Google Scholar 

  17. Vakharia V, Salim W, Wu D, Han Y, Chen Y, Zhao L, et al. Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas. J Membr Sci. 2018;555:379–87.

    Article  CAS  Google Scholar 

  18. Salim W, Han Y, Vakharia V, Wu D, Wheeler DJ, Ho WSW. Scale-up of amine-containing membranes for hydrogen purification for fuel cells. J Membr Sci. 2019;573:465–75.

    Article  CAS  Google Scholar 

  19. Han Y, Wu D, Ho WSW. Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Membr Sci. 2019;573:476–84.

    Article  CAS  Google Scholar 

  20. Wang J, Wang S, Xin Q, Li Y. Perspectives on water-facilitated CO2 capture materials. J Mater Chem A. 2017;5:6794–816.

    Article  Google Scholar 

  21. Taniguchi I, Duan S, Kai T, Kazama S, Jinnai H. Effect of the phase-separated structure on CO2 separation performance of the poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network. J Mater Chem A. 2013;1:14514–23.

    Article  CAS  Google Scholar 

  22. Taniguchi I, Urai H, Kai T, Duan S, Kazama S. A CO2-selective molecular gate of poly(amidoamine) dendrimer immobilized in a poly(ethyleneglycol) network. J Membr Sci. 2013;444:96–100.

    Article  CAS  Google Scholar 

  23. Bishnoi S, Rochelle GT. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci. 2000;55:5531–43.

    Article  CAS  Google Scholar 

  24. Conway W, Fernandes D, Beyad Y, Burns R, Lawrance G, Puxty G, et al. Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C. J Phys Chem A. 2013;117:806–13.

    Article  CAS  Google Scholar 

  25. Ciftja AF, Hartono A, Svendsen HF. 13C NMR as a method species determination in CO2 absorbent systems. Int J Greenh Gas Control 2013;16:224–32.

    Article  CAS  Google Scholar 

  26. Stowe HM, Paek E, Hwang GS. First-principles assessment of CO2 capture mechanisms in aqueous piperazine solution. Phys Chem Chem Phys. 2016;18:25296–307.

    Article  CAS  Google Scholar 

  27. Sherman BJ, Ciftja AF, Rochelle GT. Thermodynamic and mass transfer modeling of carbon dioxide absorption into aqueous 2-piperidineethanol. Chem Eng Sci. 2016;153:295–307.

    Article  CAS  Google Scholar 

  28. Ying J, Raets S, Eimer D. The activator mechanism of piperazine in aqueous methyldiethanolamine solutions. Energy Procedia. 2017;114:2078–87.

    Article  CAS  Google Scholar 

  29. Wang T, Liu F, Ge K, Fang M. Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine, N-(2-aminoethyl) ethanolamine and their blends. Chem Eng J. 2017;314:123–31.

    Article  CAS  Google Scholar 

  30. Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. J Membr Sci. 2015;475:175–83.

    Article  CAS  Google Scholar 

  31. Gaume J, Wong-Wah-Chung P, Rivaton A, Therias S, Gardette JL. Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation. RSC Adv. 2011;1:1471–81.

    Article  CAS  Google Scholar 

  32. Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films. 2011;519:7766–71.

    Article  CAS  Google Scholar 

  33. Masuda M. Recent advances in polyvinyl alcohol films. In: Finch CA, editor. Polyvinyl alcohol—developments. 2nd ed. New York: Wiley; 1992. p. 403–32.

    Google Scholar 

  34. National Astronomical Observatory of Japan. Chronological scientific tables 2020. Tokyo: Maruzen; 2019.

  35. Jakobsen JP, da Silva EF, Krane H, Scendsen F. NMR study and quantum mechanical calculations on the 2-[(2-aminoethyl)amino]-ethanol–H2O–CO2 system. J Magn Reson. 2008;191:304–14.

    Article  CAS  Google Scholar 

  36. Yamada H, Matsuzaki Y, Chowdhury F, Higashii T. Computational investigation of carbon dioxide absorption in alkanolamine solutions. J Mol Model. 2013;19:4147–53.

    Article  CAS  Google Scholar 

  37. Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater. 2017;18:950–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by JST ALCA Grant Number JPMJAL1403 and JSPS KAKENHI Grant Number JP17K05966, Japan. The WPI-I2CNER is supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan. The authors would like to thank Mr. Tomonori Oda for helping with the membrane preparations and gas separation experiments. HT and KM acknowledge the support of the Kyushu University Future Creators in Science Project (QFC-SP) by the JST Global Science Campus Project, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Taniguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, I., Kinugasa, K., Toyoda, M. et al. Piperazine-immobilized polymeric membranes for CO2 capture: mechanism of preferential CO2 permeation. Polym J 53, 129–136 (2021). https://doi.org/10.1038/s41428-020-0389-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0389-7

This article is cited by

Search

Quick links