Skip to main content
Log in

Bounds on generalized FR codes using hypergraphs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In the Distributed Storage Systems (DSSs), the encoded fraction of information is stored in a distributed fashion on different chunk servers. Recently a new paradigm of Fractional Repetition (FR) codes has been introduced, in which, encoded data information is stored on distributed servers using an encoding involving a Maximum Distance Separable (MDS) code and a Repetition code. In this work, we have considered FR codes with asymmetric parameters known as Generalized Fractional Repetition (GFR) codes. We have shown that any GFR code is equivalent to a hypergraph. Using the correspondence, the properties and the bounds of a hypergraph are directly mapped to the associated GFR code. In general, using the correspondence, the necessary and sufficient conditions for the existence of a GFR code is obtained. It is also shown that any GFR code associated with a linear hypergraph is universally good, and any locally repairable GFR code is associated with a class of non-linear hypergraph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anil, S., Gupta, M.K., Gulliver, T.A.: Enumerating some fractional repetition codes. CoRR. arXiv:1303.6801 (2013)

  2. Aydinian, H., Boche, H.: Fractional repetition codes based on partially ordered sets. In: Proceedings of IEEE Information Theory Workshop (ITW), pp. 51–55 (2017)

  3. Benerjee, K.G., Gupta, M.K.: On dress codes with flowers. In: 2015 7th International Workshop on Signal Design and its Applications in Communications (IWSDA), pp. 108–112 (2015)

  4. Benerjee, K.G., Gupta, M.K.: On non-uniform flower codes. Cryptogr. Commun. 12(3), 613–643 (2020)

    Article  MathSciNet  Google Scholar 

  5. Berge, C.: Hypergraphs, Combinatorics of Finite Sets. North-Holland Mathematical Library, vol. 45. North-Holland, Amsterdam (1989)

    Google Scholar 

  6. Bretto, A.: Hypergraph Theory. Springer, Berlin (2013)

    Book  Google Scholar 

  7. Dimakis, A., Godfrey, P., Wu, Y., Wainwright, M., Ramchandran, K.: Network coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551 (2010)

    Article  Google Scholar 

  8. El Rouayheb, S., Ramchandran, K.: Fractional repetition codes for repair in distributed storage systems. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1510–1517 (2010)

  9. Ernvall, T.: The existence of fractional repetition codes. CoRR. arXiv:1201.3547 (2012)

  10. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings of the 19th ACM Symposium on Operating Systems Principles, SOSP’03, pp. 29–43. ACM, New York (2003)

  11. Gupta, M.K., Agrawal, A., Yadav, D.: On weak dress codes for cloud storage. CoRR. arXiv:1302.3681 (2013)

  12. Kamath, G.M., Silberstein, N., Prakash, N., Rawat, A.S., Lalitha, V., Koyluoglu, O.O., Kumar, P.V., Vishwanath, S.: Explicit MBR all-symbol locality codes. In: 2013 IEEE International Symposium on Information Theory, pp. 504–508 (2013)

  13. Kim, Y.S., Park, H., No, J.S.: Construction of new fractional repetition codes from relative difference sets with \(\lambda =1\). Entropy 19(10), 112–128 (2017)

    Google Scholar 

  14. Koo, J., Gill, J.: Scalable constructions of fractional repetition codes in distributed storage systems. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1366–1373 (2011)

  15. Nam, M.Y., Kim, J.H., Song, H.Y.: Locally repairable fractional repetition codes. In: 2015 7th International Workshop on Signal Design and Its Applications in Communications (IWSDA), pp. 128–132 (2015)

  16. Nam, M.Y., Kim, J.H., Song, H.Y.: Locally repairable fractional repetition codes. J. Korean Inst. Commun. Inf. Sci. 40(9), 1741–1753 (2015)

    Google Scholar 

  17. Nam, M.Y., Kim, J.H., Song, H.Y.: Some constructions for fractional repetition codes with locality 2. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(4), 936–943 (2017)

    Article  Google Scholar 

  18. Olmez, O., Ramamoorthy, A.: Repairable replication-based storage systems using resolvable designs. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1174–1181 (2012)

  19. Olmez, O., Ramamoorthy, A.: Constructions of fractional repetition codes from combinatorial designs. In: 2013 Asilomar Conference on Signals, Systems and Computers, pp. 647–651 (2013)

  20. Olmez, O., Ramamoorthy, A.: Replication based storage systems with local repair. In: Proceedings of International Symposium on Network Coding (NetCod), pp. 1–6 (2013)

  21. Olmez, O., Ramamoorthy, A.: Fractional repetition codes with flexible repair from combinatorial designs. IEEE Trans. Inf. Theory 62(4), 1565–1591 (2016)

    Article  MathSciNet  Google Scholar 

  22. Park, H., Kim, Y.S.: Construction of fractional repetition codes with variable parameters for distributed storage systems. Entropy 18(12), 441 (2016)

    Article  Google Scholar 

  23. Pawar, S., Noorshams, N., El Rouayheb, S., Ramchandran, K.: DRESS codes for the storage cloud: Simple randomized constructions. In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2338 –2342 (2011)

  24. Pawar, S., Noorshams, N., El Rouayheb, S., Ramchandran, K.: DRESS codes for the storage cloud: simple randomized constructions. In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2338–2342 (2011)

  25. Porter, A., Silas, S., Wootters, M.: Load-balanced fractional repetition codes. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2072–2076 (2018)

  26. Prajapati, S.A., Deb, S., Gupta, M.K.: On some universally good fractional repetition codes. In: 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), pp. 404–411 (2020)

  27. Rashmi, K., Shah, N., Kumar, P., Ramchandran, K.: Explicit construction of optimal exact regenerating codes for distributed storage. In: 47th Annual Allerton Conference on Communication, Control, and Computing, 2009. Allerton 2009, pp. 1243 –1249 (2009)

  28. Silberstein, N.: Fractional repetition and erasure batch codes. In: Coding Theory and Applications, CIM Series in Mathematical Sciences, vol. 3, pp. 335–343. Springer (2014)

  29. Silberstein, N., Etzion, T.: Optimal fractional repetition codes for distributed storage systems. In: 2014 IEEE 28th Convention of Electrical Electronics Engineers in Israel (IEEEI), pp. 1–4 (2014)

  30. Silberstein, N., Etzion, T.: Optimal fractional repetition codes and fractional repetition batch codes. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2046–2050 (2015)

  31. Silberstein, N., Etzion, T.: Optimal fractional repetition codes based on graphs and designs. IEEE Trans. Inf. Theory PP(99), 1–1 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Su, Y.: Pliable fractional repetition codes for distributed storage systems: design and analysis. IEEE Trans. Commun. 66(6), 2359–2375 (2018)

    Article  Google Scholar 

  33. Su, Y.S.: Constructions of fractional repetition codes with flexible per-node storage and repetition degree. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2017)

  34. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quantitative comparison. In: Proceedings of the International Workshop on Peer-to-Peer Systems, pp. 328–337 (2002)

  35. Xu, G., Mao, Q., Lin, S., Shi, K., Zhang, H.: Extremal graphic model in optimizing fractional repetition codes for efficient storage repair. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 1–6 (2016)

  36. Yu, Q., Sung, C.W., Chan, T.: Irregular fractional repetition code optimization for heterogeneous cloud storage. IEEE J. Sel. Areas Commun. 32(5), 1048–1060 (2014)

    Article  Google Scholar 

  37. Zhang, M.F., Xia, S.T.: Cyclic repetition erasure code. In: Proceedings of 3rd International Conference on Consumer Electronics, Communications and Networks, pp. 213–216 (2013)

  38. Zhu, B.: Rethinking fractional repetition codes: new construction and code distance. IEEE Commun. Lett. 20(2), 220–223 (2016)

    Article  Google Scholar 

  39. Zhu, B.: A study on universally good fractional repetition codes. IEEE Commun. Lett. 22(5), 890–893 (2018)

    Article  Google Scholar 

  40. Zhu, B., Li, H.: Adaptive fractional repetition codes for dynamic storage systems. IEEE Commun. Lett. 19(12), 2078–2081 (2015)

    Article  Google Scholar 

  41. Zhu, B., Li, H.: Exploring node repair locality in fractional repetition codes. IEEE Commun. Lett. 20(12), 2350–2353 (2016)

    Article  Google Scholar 

  42. Zhu, B., Li, H., Hou, H., Shum, K.W.: Replication-based distributed storage systems with variable repetition degrees. In: 2014 20th National Conference on Communications (NCC), pp. 1–5 (2014)

  43. Zhu, B., Li, H., Li, S.Y.R.: General fractional repetition codes from combinatorial designs. IEEE Access 5, 26251–26256 (2017)

    Article  Google Scholar 

  44. Zhu, B., Li, H., Shum, K.W., Li, S.Y.R.: HFR code: a flexible replication scheme for cloud storage systems. IET Commun. 9(17), 2095–2100 (2015)

    Article  Google Scholar 

  45. Zhu, B., Shum, K., Li, H., Hou, H.: General fractional repetition codes for distributed storage systems. IEEE Commun. Lett. 18(4), 660–663 (2014)

    Article  Google Scholar 

  46. Zhu, B., Shum, K.W., Li, H.: Heterogeneity-aware codes with uncoded repair for distributed storage systems. IEEE Commun. Lett. 19(6), 901–904 (2015)

    Article  Google Scholar 

  47. Zhu, B., Shum, K.W., Li, H., Li, S.Y.R.: On low repair complexity storage codes via group divisible designs. In: Proceedings of IEEE Symposium on Computers and Communications (ISCC), pp. 1–5 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The preliminary version of the paper is available at https://arxiv.org/abs/1711.07631.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, K., Gupta, M.K. Bounds on generalized FR codes using hypergraphs. J. Appl. Math. Comput. 65, 771–792 (2021). https://doi.org/10.1007/s12190-020-01414-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01414-8

Keywords

Mathematics Subject Classification

Navigation