Skip to main content
Log in

Homoclinic dynamics in a spatial restricted four-body problem: blue skies into Smale horseshoes for vertical Lyapunov families

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The set of transverse homoclinic intersections for a saddle-focus equilibrium in the planar equilateral restricted four-body problem admits certain simple homoclinic orbits which form the skeleton of the complete homoclinic intersection—or homoclinic web. In the present work, the planar restricted four-body problem is viewed as an invariant subsystem of the spatial problem, and the influence of this planar homoclinic skeleton on the spatial dynamics is studied from a numerical point of view. Starting from the vertical Lyapunov families emanating from saddle-focus equilibria, we compute the stable/unstable manifolds of these spatial periodic orbits and look for intersections between these manifolds near the fundamental planar homoclinics. In this way, we are able to continue all of the basic planar homoclinic motions into the spatial problem as homoclinics for appropriate vertical Lyapunov orbits which, by the Smale tangle theorem, suggest the existence of chaotic motions in the spatial problem. While the saddle-focus equilibrium solutions in the planar problems occur only at a discrete set of energy levels, the cycle-to-cycle homoclinics in the spatial problem are robust with respect to small changes in energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abraham, R.H.: Chaostrophes, intermittency, and noise. In: Chaos, fractals, and dynamics (Guelph, Ont., 1981/1983), volume 98 of Lecture Notes in Pure and Applied Mathematics, pp. 3–22. Dekker, New York, (1985)

  • Alvarez-Ramírez, M., Barrabés, E.: Transport orbits in an equilateral restricted four-body problem. Celestial Mech. Dyn. Astronom. 121(2), 191–210 (2015)

    ADS  MathSciNet  Google Scholar 

  • Alvarez-Ramírez, M., Delgado, J., Vidal, C.: Global regularization of a restricted four-body problem. Int. J. Bifur. Chaos Appl. Sci. Eng. 24(7), 1450092 (2014)

    MathSciNet  MATH  Google Scholar 

  • Alvarez-Ramírez, M., García, A., Palacián, J.F., Yanguas, P.: Oscillatory motions in restricted n-body problems. J. Differ. Equ. 265, 779–803 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Alvarez-Ramírez, M., Vidal, C.: Dynamical aspects of an equilateral restricted four-body problem. Math. Probl. Eng., pages Art. ID 181360, 23, (2009)

  • Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21(8), 2179–2193 (2011)

    MathSciNet  MATH  Google Scholar 

  • Barros, J.F., Leandro, E.S.G.: The set of degenerate central configurations in the planar restricted four-body problem. SIAM J. Math. Anal. 43(2), 634–661 (2011)

    MathSciNet  MATH  Google Scholar 

  • Barros, J.F., Leandro, E.S.G.: Bifurcations and enumeration of classes of relative equilibria in the planar restricted four-body problem. SIAM J. Math. Anal. 46(2), 1185–1203 (2014)

    MathSciNet  MATH  Google Scholar 

  • Breden, M., Lessard, J.P., Mireles James, J.D.: Computation of maximal local (un)stable manifold patches by the parameterization method. Indagationes Mathematicae 27(1), 340–367 (2016)

    MathSciNet  MATH  Google Scholar 

  • Burgos-García, J.: Families of periodic orbits in the planar Hill’s four-body problem. Astrophys. Space Sci. 361(11), Paper No. 353 (2016)

    ADS  MathSciNet  Google Scholar 

  • Burgos-Garcia, J., Bengochea, A.: Horseshoe orbits in the restricted four-body problem. Astrophys. Space Sci. 362(11), Paper No. 212 (2017)

    ADS  MathSciNet  Google Scholar 

  • Burgos-García, J., Delgado, J.: On the “blue sky catastrophe” termination in the restricted four-body problem. Celestial Mech. Dynam. Astronom. 117(2), 113–136 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345(2), 247–263 (2013)

    ADS  MATH  Google Scholar 

  • Burgos-García, J., Gidea, M.: Hill’s approximation in a restricted four-body problem. Celestial Mech. Dynam. Astronom. 122(2), 117–141 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Burgos-García, J., Lessard, J.-P., MirelesJames, J.D.: Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence. Celestial Mech. Dyn. Astronom. 131(1), Art. 2, 36 (2019)

    MathSciNet  Google Scholar 

  • Burgos-García, J., Lessard, J.P., Mireles James, J.D.: Spatial periodic orbits in the equaliteral circular restricted four body problem: computer assisted proofs of existence. (Submitted), (2018)

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Calleja, R., de la Llave, R.: Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps. Nonlinearity 22(6), 1311–1336 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Calleja, R.C., Celletti, A., de la Llave, R.: A KAM theory for conformally symplectic systems: efficient algorithms and their validation. J. Differ. Equ. 255(5), 978–1049 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Calleja, R.C., Celletti, A., de la Llave, R.: Local behavior near quasi-periodic solutions of conformally symplectic systems. J. Dyn. Differ. Equ. 25(3), 821–841 (2013)

    MathSciNet  MATH  Google Scholar 

  • Carr, J.: Applications of centre manifold theory, Applied Mathematical Sciences, vol. 35. Springer, New York (1981)

    MATH  Google Scholar 

  • Castelli, R., Lessard, J.-P., Mireles James, J.D.: Parameterization of invariant manifolds for periodic orbits I: efficient numerics via the floquet normal form. SIAM J. Appl. Dyn. Syst. 14(1), 132–167 (2015)

    MathSciNet  MATH  Google Scholar 

  • Castelli, R., Lessard, J.P., Mireles James, J.D.: Parameterization of invariant manifolds for periodic orbits (ii): a-posteriori analysis and computer assisted error bounds. (Submitted), (2016)

  • Chazy, J.: Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment. Ann. Sci. École Norm. Sup. 3(39), 29–130 (1922)

    MATH  Google Scholar 

  • Chenciner, A.: Poincaré and the three-body problem. In Henri, P. (ed.) 1912–2012, volume 67 of Progress in Mathematical Physics, pp. 51–149. Birkhäuser/Springer (2015)

  • Cheng, X., She, Z.: Study on chaotic behavior of the restricted four-body problem with an equilateral triangle configuration. Int. J. Bifur. Chaos Appl. Sci. Eng. 27(2), 1750026, 12 (2017)

    MathSciNet  MATH  Google Scholar 

  • Contopoulos, G., Pinotsis, A.: Infinite bifurcations in the restricted three-body problem. Astronom. Astrophys. 133(1), 49–51 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  • Darwin, G.H.: Periodic Orbits. Acta Math. 21(1), 99–242 (1897)

    MathSciNet  MATH  Google Scholar 

  • de la Llave, R., González, A., Jorba, À., Villanueva, J.: KAM theory without action-angle variables. Nonlinearity 18(2), 855–895 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • de la Llave, R., Lomelí, H.E.: Invariant manifolds for analytic difference equations. SIAM J. Appl. Dyn. Syst. 11(4), 1614–1651 (2012)

    MathSciNet  MATH  Google Scholar 

  • de la Llave, R., Mireles James, J.D.: Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete Contin. Dyn. Syst. 32(12), 4321–4360 (2012)

    MathSciNet  MATH  Google Scholar 

  • Devaney, R.L.: Homoclinic orbits in Hamiltonian systems. J. Differ. Equ. 21(2), 431–438 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  • Devaney, R.L.: Blue sky catastrophes in reversible and Hamiltonian systems. Indiana Univ. Math. J. 26(2), 247–263 (1977)

    MathSciNet  MATH  Google Scholar 

  • Doedel, E.J., Kooi, B.W., Van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs. II. Cycle-to-cycle connections. Int. J. Bifur. Chaos Appl. Sci. Eng. 19(1), 159–169 (2009)

    MathSciNet  MATH  Google Scholar 

  • Figueras, J., Gameiro, M., Lessard, J.-P., de la Llave, R.: A framework for the numerical computation and a posteriori varrification of invariant objects of evolution equations. (Submitted) http://archimede.mat.ulaval.ca/jplessard/Publications_files/ks_rigorous13.pdf (2016)

  • Fontich, E., de la Llave, R., Sire, Y.: A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electron. Res. Announc. Math. Sci. 16, 9–22 (2009)

    MathSciNet  MATH  Google Scholar 

  • Gameiro, M., Lessard, J.-P., Ricaud, Y.: Rigorous numerics for piecewise-smooth systems: a functional analytic approach based on Chebyshev series. J. Comput. Appl. Math. 292, 654–673 (2016)

    MathSciNet  MATH  Google Scholar 

  • Gidea, M., Burgos, M.: Chaotic transfers in three- and four-body systems. Phys. A 328(3–4), 360–366 (2003)

    MathSciNet  MATH  Google Scholar 

  • Gómez, G., Llibre, J., Masdemont, J.: Homoclinic and heteroclinic solutions in the restricted three-body problem. Celestial Mech. 44(3), 239–259 (1988/89)

  • Groothedde, C.M., Mireles James, J.D.: Parameterization method for unstable manifolds of delay differential equations. J. Comput. Dyn. (2017). https://doi.org/10.3934/jcd.2017002

    Article  MathSciNet  MATH  Google Scholar 

  • Guillamon, A., Huguet, G.: A computational and geometric approach to phase resetting curves and surfaces. SIAM J. Appl. Dyn. Syst. 8(3), 1005–1042 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Haro, À., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst. Ser. B 6(6), 1261–1300 (electronic) (2006)

    MathSciNet  MATH  Google Scholar 

  • Haro, À., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results. J. Differ. Equ. 228(2), 530–579 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Haro, À., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity. SIAM J. Appl. Dyn. Syst. 6(1), 142–207 (2007). (electronic)

    ADS  MathSciNet  MATH  Google Scholar 

  • Haro, À., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The parameterization method for invariant manifolds, volume 195 of Applied Mathematical Sciences. From rigorous results to effective computations. Springer, Cham (2016)

    MATH  Google Scholar 

  • He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method I: finitely differentiable, hyperbolic case. (submitted) mp\_arc/c/15/15-105, (2015a)

  • He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method II: Analytic case. (Submitted) mp\_arc/c/15/15-106, (2015b)

  • Henrard, J.: Proof of a conjecture of E. Strömgren. Celestial Mech. 7, 449–457 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  • Henrard, J.: The web of periodic orbits at \(L_4\). Celestial Mech. Dyn. Astronom. 83(1–4), 291–302 (2002)

    ADS  MATH  Google Scholar 

  • Henrard, J., Navarro, J.F.: Families of periodic orbits emanating from homoclinic orbits in the restricted problem of three bodies. Celestial Mech. Dyn. Astronom. 89(3), 285–304 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  • Huguet, G., de la Llave, R.: Computation of limit cycles and their isochrons: fast algorithms and their convergence. SIAM J. Appl. Dyn. Syst. 12(4), 1763–1802 (2013)

    MathSciNet  MATH  Google Scholar 

  • Huguet, G., de la Llave, R., Sire, Y.: Computation of whiskered invariant tori and their associated manifolds: new fast algorithms. Discrete Contin. Dyn. Syst. 32(4), 1309–1353 (2012)

    MathSciNet  MATH  Google Scholar 

  • Kalies, W., Kepley, S., Mireles James, J.D.: Analytic continuation of local (un)stable manifolds with rigorous computer assisted error bounds. SIAM J. Appl. Dyn. Syst. 17(1), 157–202 (2018)

    MathSciNet  MATH  Google Scholar 

  • Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kepley, S., Mireles James, J.D.: Chaotic motions in the restricted four body problem via Devaney’s saddle-focus homoclinic tangle theorem. J. Differ. Equ. 266(4), 1709–1755 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kepley, S., Mireles James, J.D.: Homoclinic dynamics in a restricted four-body problem: transverse connections for the saddle-focus equilibrium solution set. Celestial Mech. Dyn. Astronom. 131(3), 55 (2019)

    MathSciNet  Google Scholar 

  • Leandro, E.S.G.: On the central configurations of the planar restricted four-body problem. J. Differ. Equ. 226(1), 323–351 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lerman, L.M.: Behavior of a Hamiltonian system in a neighborhood of a transversal homoclinic saddle-focus trajectory. Uspekhi Mat. Nauk 44(2(266)), 233–234 (1989)

    MathSciNet  Google Scholar 

  • Lerman, L.M.: Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus. Chaos 1(2), 174–180 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lessard, J.-P., Mireles James, J.D., Reinhardt, C.: Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields. J. Dyn. Differ. Equ. 26(2), 267–313 (2014)

    MathSciNet  MATH  Google Scholar 

  • Lessard, J.-P., Reinhardt, C.: Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal. 52(1), 1–22 (2014)

    MathSciNet  MATH  Google Scholar 

  • Li, X., de la Llave, R.: Construction of quasi-periodic solutions of delay differential equations via KAM techniques. J. Differ. Equ. 247(3), 822–865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Liapounoff, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, no. 17. Princeton University Press//Oxford University Press, London (1947)

    MATH  Google Scholar 

  • Mireles J.D.: Fourier-Taylor approximation of unstable manfiolds for compact maps: numerical implementation and computer assisted error bounds. (Submitted) http://cosweb1.fau.edu/~jmirelesjames/unstableManifoldCompactMapPage.html, (2015)

  • MirelesJames, J.D., Mischaikow, K.: Rigorous a-posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. SIAM J. Appl. Dyn. Syst. 12(2), 957–1006 (2013)

    MathSciNet  MATH  Google Scholar 

  • Mireles James, J.D., Reinhardt, C.: Fourier-Taylor parameterization of unstable manifolds for parabolic partial differential equations: Formalism, implementation, and rigorous validation. (Submitted) http://cosweb1.fau.edu/~jmirelesjames/unstableManParmPDEPage.html (2016)

  • Mireles James, J.D., van den Berg, J.B.: Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. J. Discrete Continuous Dyn. Syst. Ser. A 36(9), 4637–4664 (2016)

    MathSciNet  MATH  Google Scholar 

  • Moser, J.: On the generalization of a theorem of A. Liapounoff. Commun. Pure Appl. Math. 11, 257–271 (1958)

    MATH  Google Scholar 

  • Jürgen M.: Stable and random motions in dynamical systems. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ: With special emphasis on celestial mechanics, Reprint of the 1973 original. With a foreword by Philip J, Holmes (2001)

  • Moser, J., Zehnder, E.J.: Notes on dynamical systems, volume 12 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2005)

  • Moulton, F.R., Buchanan, D., Buck, T., Griffin, F.L., Longley, W.R., MacMillan, W.D.: Periodic Orbits. Number Publication No. 161. Carnegie Institution of Washington, Washington, D.C. (1920)

    Google Scholar 

  • Murray, M., Mireles James, J.D.: Chebyshev-taylor parameterization of stable/unstable manifolds for periodic orbits: implementation and applications. Internat. J. Bifur. Chaos Appl. 27(14), 1730050 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ortega, J.M.: The Newton-Kantorovich theorem. Am. Math. Monthly 75, 658–660 (1968)

    MathSciNet  MATH  Google Scholar 

  • Papadakis, K.E.: Families of asymmetric periodic solutions in the restricted four-body problem. Astrophys. Space Sci. 361(12), 377–15 (2016)

    ADS  MathSciNet  Google Scholar 

  • Papadakis, K.E.: Families of three-dimensional periodic solutions in the circular restricted four-body problem. Astrophys. Space Sci. 361(4), 129–14 (2016)

    ADS  MathSciNet  Google Scholar 

  • Pedersen, P.: Librationspunkte im restringierten vierkörperproblem. Dan. Mat. Fys. Med. 21(6), 1–80 (1944)

    MATH  Google Scholar 

  • Pedersen, P.: Stabilitätsuntersuchungen im restringierten vierkörperproblem. Dan. Mat. Fys. Medd. 26(16), 1–38 (1952)

    MATH  Google Scholar 

  • Pinotsis, A.D.: Bifurcations, stability and universality of families of periodic orbits in the restricted three-body problem. Astronom. and Astrophys. 159(1–2), 231–238 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  • Pinotsis, Antonis D.: Infinite Feigenbaum sequences and spirals in the vicinity of the Lagrangian periodic solutions. Celestial Mech. Dyn. Astronom. 108(2), 187–202 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • Poincaré, H.: New methods of celestial mechanics. Vol. 1, volume 13 of History of Modern Physics and Astronomy. American Institute of Physics, New York (1993a). Periodic and asymptotic solutions, Translated from the French, Revised reprint of the 1967 English translation, With endnotes by V. I. Arnolé d, Edited and with an introduction by Daniel L. Goroff

  • Poincaré, H.: New methods of celestial mechanics. Vol. 2, volume 13 of History of Modern Physics and Astronomy. American Institute of Physics, New York (1993b). Approximations by series, Translated from the French, Revised reprint of the 1967 English translation, With endnotes by V. M. Alekseev, Edited and with an introduction by Daniel L. Goroff

  • Poincaré, H.: New methods of celestial mechanics. Vol. 3, volume 13 of History of Modern Physics and Astronomy. American Institute of Physics, New York (1993c). Integral invariants and asymptotic properties of certain solutions, Translated from the French, Revised reprint of the 1967 English translation, With endnotes by G. A. Merman, Edited and with an introduction by Daniel L. Goroff

  • She, Z., Cheng, X.: The existence of a Smale horseshoe in a planar circular restricted four-body problem. Celestial Mech. Dyn. Astronom. 118(2), 115–127 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • She, Z., Cheng, X., Li, C.: The existence of transversal homoclinic orbits in a planar circular restricted four-body problem. Celestial Mech. Dyn. Astronom. 115(3), 299–309 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shilnikov, L.P.: Existence of a countable set of periodic motions in a four-dimensional space in an extended neighborhood of a saddle-focus. Dokl. Akad. Nauk SSSR 172, 54–57 (1967)

    MathSciNet  Google Scholar 

  • Shilnikov, L.P.: On the question of the structure of an extended neighborhood of a structurally stable state of equilibrium of saddle-focus type. Mat. Sb. (N.S.) 81(123), 92–103 (1970)

    MathSciNet  Google Scholar 

  • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V.: Showcase of blue sky catastrophes. Internat. J. Bifur. Chaos Appl. Sci. Eng. 24(8), 1440003–10 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shilnikov, L.P.: A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math USSR-Sbornik 10(1), 91 (1970)

    Google Scholar 

  • Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Classics in Mathematics. Springer-Verlag, Berlin, (1995). Translated from the German by C. I. Kalme, Reprint of the 1971 translation

  • Simó, C.: Relative equilibrium solutions in the four-body problem. Celestial Mech. 18(2), 165–184 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  • Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    MathSciNet  MATH  Google Scholar 

  • Strömgren, E.: Connaissance actuelle des orbites dans le probleme des trois corps. Bull. Astron. 9, 87–130 (1934)

    ADS  MATH  Google Scholar 

  • Szebehely, V., Nacozy, P.: A class of e. strömgren’s direct orbits in the restricted problem. The Astron. J. 77(2), 184–190 (1967)

    ADS  Google Scholar 

  • Szebehely, V., Flandern, T.V.: A family of retegrade orbits around the triangular equilibrium points. The Astron. J. 72(3), 373–379 (1967)

    ADS  Google Scholar 

  • Van den Berg, J.B., Mireles James, J.D., Reinhardt, C.: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra. J. Nonlinear Sci. 26, 1055–1095 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • van den Berg, J.B., Deschênes, A., Lessard, J.-P., Mireles James, J.D.: Stationary coexistence of hexagons and rolls via rigorous computations. SIAM J. Appl. Dyn. Syst. 14(2), 942–979 (2015)

    MathSciNet  MATH  Google Scholar 

  • van den Berg, J.B., Breden, M., Lessard, J.-P., Murray, M.: Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof. J. Differ. Equ. 264, 3086 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • van den Berg, J.B., Sheombarsing, R.S.S.: Rigorous numerics for ODEs using Chebyshev series and domain decomposition, (2016). Preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Murray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The J. D. Mireles James was partially supported by NSF Grant DMS-1813501. Maxime Murray and J.D. Mireles James were partially supported by NSF Grant DMS-1700154 and by the Alfred P. Sloan Foundation Grant G-2016-7320.

Appendices

Appendix A: Obtaining a polynomial field by automatic differentiation of the CRFBP

To facilitate formal series calculations in the CRFBP, we first rewrite the problem as a first-order ordinary differential equation and then introduce a change of variable, often referred to as automatic differentiation, to obtain a polynomial vector field. The problem is recovered via projection, as long as the initial conditions are restricted to an appropriate submanifold. We first set

$$\begin{aligned} u_1 = x, \quad u_2 = \dot{x}, \quad u_3= y, \quad u_4 = \dot{y}, \quad u_5=z,\quad u_6= \dot{z}, \end{aligned}$$
(14)

and obtain a first-order ODE \(\dot{u} = f(u)\) given by

$$\begin{aligned} \begin{aligned} \dot{u_1}&= u_2, \\ \dot{u_2}&= 2 u_4 +\varOmega _{u_1},\\ \dot{u_3}&= u_4, \\ \dot{u_4}&= -2u_2 +\varOmega _{u_3},\\ \dot{u_5}&= u_6, \\ \dot{u_6}&= \varOmega _{u_5}, \end{aligned} \end{aligned}$$
(15)

where \(\varOmega \) is as previously given but using the new set of variable. This vector field still has singularities introduced by the terms corresponding to the inverse of the distance with the primaries, and we extend our set of variables using the following definitions:

$$\begin{aligned} u_7 = \frac{1}{\sqrt{(x-x_1)^2 +(y-y_1)^2 +(z-z_1)^2}} = \frac{1}{\sqrt{(u_1-x_1)^2 +(u_3-y_1)^2 +(u_5-z_1)^2}}, \end{aligned}$$
(16)
$$\begin{aligned} u_8 = \frac{1}{\sqrt{(x-x_2)^2 +(y-y_2)^2 +(z-z_2)^2}} = \frac{1}{\sqrt{(u_1-x_2)^2 +(u_3-y_2)^2 +(u_5-z_2)^2}}, \end{aligned}$$
(17)
$$\begin{aligned} u_9 = \frac{1}{\sqrt{(x-x_3)^2 +(y-y_3)^2 +(z-z_3)^2}} = \frac{1}{\sqrt{(u_1-x_3)^2 +(u_3-y_3)^2 +(u_5-z_3)^2}}. \end{aligned}$$
(18)

Let \(U \subset {\mathbb {R}}^6\) be an open set excluding the primaries. Then, a direct computation provides that for the function \(R:U \rightarrow {\mathbb {R}}^9\) given by

$$\begin{aligned} R(u_1,u_2,u_3,u_4,u_5,u_6) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ \frac{1}{\sqrt{(u_1-x_1)^2 +(u_3-y_1)^2 +(u_5-z_1)^2}} \\ \frac{1}{\sqrt{(u_1-x_2)^2 +(u_3-y_2)^2 +(u_5-z_2)^2}} \\ \frac{1}{\sqrt{(u_1-x_3)^2 +(u_3-y_3)^2 +(u_5-z_3)^2}} \end{pmatrix} \end{aligned}$$
(19)

and the polynomial vector field \(F :{\mathbb {R}}^9 \rightarrow {\mathbb {R}}^9\) given by

$$\begin{aligned} F(u)= \begin{pmatrix} u_2 \\ 2u_4 +u_1 +m_1(x_1-u_1)u_7u_7u_7 +m_2(x_2-u_1)u_8u_8u_8 +m_2(x_3-u_1)u_9u_9u_9 \\ u_4 \\ -2u_2 +u_3 +m_1(y_1-u_3)u_7u_7u_7 +m_2(y_2-u_3)u_8u_8u_8 +m_2(x_3-u_1)u_9u_9u_9 \\ u_6 \\ m_1(z_1-u_5)u_7u_7u_7 +m_2(z_2-u_5)u_8u_8u_8 +m_2(z_3-u_5)u_9u_9u_9 \\ (x_1-u_1)u_2u_7u_7u_7 +(y_1-u_3)u_4u_7u_7u_7 +(z_1-u_5)u_6u_7u_7u_7 \\ (x_2-u_1)u_2u_8u_8u_8 +(y_2-u_3)u_4u_8u_8u_8 +(z_2-u_5)u_6u_8u_8u_8 \\ (x_3-u_1)u_2u_9u_9u_9 +(y_3-u_3)u_4u_9u_9u_9 +(z_3-u_5)u_6u_9u_9u_9 \end{pmatrix}, \end{aligned}$$
(20)

we have the infinitesimal conjugacy

$$\begin{aligned} DR(u)f(u) = F(R(u)), \quad \forall u \in U. \end{aligned}$$
(21)

Hence, orbits of \(u' = F(u)\) have the same dynamics as \(x' = f(x)\) after projecting onto the first six components. We note that, as an effect of the change of variable, the new vector field does not have any singularity. Nevertheless, the dynamics of the two are related only on the graph of R, and R caries the singularities of f. The following items formalize the remarks just made.

  1. 1.

    Let \(\pi :{\mathbb {R}}^9 \rightarrow {\mathbb {R}}^6\) denotes the projection onto the first six coordinates. So that for all \(u \in U\) we have \(u=\pi (R(u))\) and

    $$\begin{aligned} \pi (F(R(u))) =f(u). \end{aligned}$$

    Therefore, we recover the original problem.

  2. 2.

    The orbits of f are mapped onto orbits of F under R and the graph of R is invariant under the flow of F.

  3. 3.

    If \(H:{\mathbb {R}}^6 \rightarrow {\mathbb {R}}\) is constant along curves solution of the initial system, then \(G:{\mathbb {R}}^9 \rightarrow {\mathbb {R}}\) such that \(G(R(u))= H(u)\) for all \(u \in U\) is constant along curves solution of the extended problem.

It follows from those remarks that it is possible to find periodic orbits of the four-body problem using the vector field F. Our goal is to compute stable and unstable manifolds for a periodic orbit \(\gamma (t)\) of \({\dot{u}}=f(u)\), so that we have to show that the associated periodic orbit \(\varGamma (t)=R(\gamma (t))\) has the same stability type. This is the object of the next theorem.

Theorem 1

Let \(\gamma (t)\) be a periodic orbit of \({\dot{u}}=f(u)\) with Floquet multiplier \(\lambda \) associated with the tangent bundle v(t). Then \(\lambda \) is a Floquet multiplier of the periodic orbit \(\varGamma (t)=R(\gamma (t))\), solution to the system \(\dot{x} = F(x)\), moreover \(\xi (t)= DR(\gamma (t))v(t)\) is the associated tangent bundle.

Proof

We first note that v(t) will satisfy

$$\begin{aligned} \dot{v} (t)= Df(\gamma (t))v(t) -\lambda v(t) \end{aligned}$$
(22)

and that differentiating (21) provides

$$\begin{aligned} D^2R(u)f(u) +DR(u)Df(u) = DF(R(u))DR(u). \end{aligned}$$
(23)

So that a direct computation provides that

$$\begin{aligned} {\dot{\xi }}(t)&= D^2R(\gamma (t)){\dot{\gamma }}(t)v(t) +DR(\gamma (t))\dot{v}(t) \\&= D^2R(\gamma (t))f(\gamma (t))v(t) +DR(\gamma (t))Df(\gamma (t))v(t) -DR(\gamma (t))\lambda v(t) \end{aligned}$$

where we used the fact that \(\gamma (t)\) is a periodic solution of f as well as Eq. (22). Then using (23), \(\varGamma (t)=R(\gamma (t))\) and \(\xi (t)= DR(\gamma (t))v(t)\), we obtain that

$$\begin{aligned} {\dot{\xi }}(t)= DF(\varGamma (t))\xi (t) -\lambda \xi (t). \end{aligned}$$

This is the desired result. \(\square \)

It follows from this result that in the extended system six of the multipliers will be known from the usual theory. The other three are all zeros so that the dimension of the stable and unstable manifolds for any orbits remains unchanged.

Appendix B: Orbit data

In this section, we provide several tables of data meant to make the present work more reproducible. Since our calculations of the connecting orbits utilize fairly sophisticated Fourier–Taylor approximations of the local stable/unstable manifolds in the formulation of the two-point boundary value problems, it is unreasonable to think that the casual reader would reimplement these calculations. On the other hand, many readers will have experience in the use of numerical integrators for problems in Celestial Mechanics, and once equipped with the equations of motion it is not unreasonable to think one might want to reproduce some of the periodic orbits and connections discussed in the present work. To this end, we provide accurate initial conditions which can be integrated to reproduce the orbits discussed in the present work. The resulting orbits could also be taken as initial conditions for numerical continuation software packages like AUTO or MatCont.

The table is organized in the same way. In the first column, we give the initial point expressed as a six-dimensional vector representing the initial position and momentum. The coordinates are given in the following order:

$$\begin{aligned} P_0 = ( x, \dot{x}, y, \dot{y}, z, \dot{z}). \end{aligned}$$

Then the second column of the table provides T an approximation of the period of the periodic orbit starting at the point previously given. The third column is n, the number of Floquet multipliers with positive real part. Finally, the last column shows \(J(P_0)\), the energy level of the initial data. We note that that case of interest in this paper is when \(n=2\) and the multipliers are complex conjugate. To obtain the data, we start by computing the center manifold of each libration point to find an initial guess for \(P_0\) and T. To improve the guess, we numerically integrate the approximated periodic orbit and express the result in Fourier coefficients. Then Newton’s method is applied to obtain a guess for the periodic orbit with defect close to machine precision, for all cases covered by the tables it suffices to take 50 Fourier coefficients. The resulting sequence of Fourier coefficients is then a starting point for any continuation method in order to find other members of the family. To construct the table, we used a zeroth-order predictor–corrector algorithm using Newton’s method in the space of Fourier coefficients; in this case, the frequency is an unknown of the system, while the energy level is one of the inputs of the algorithm. The cases of \({\mathcal {L}}_0\) are given at \(m_1=0.4\) and \(m_2=0.35\), while the case at \({\mathcal {L}}_5\) is given with equal masses.

Table 1 Family at \(L_0\)
Table 2 Family at \(L_5\), this table is computed with equal masses and we recall that periodic orbits at \({\mathcal {L}}_{4,6}\) can be obtained by a rotation of \(\pm 120\) degrees. The cases of energy from 2.4 to 2.50 have real Floquet multipliers, while the remaining of the table are complex conjugate

The connecting orbits in Fig. 15 are homoclinic and accumulate to the periodic orbit with initial condition in the row \(J=3.2\), given by the table for \({\mathcal {L}}_0\). The initial data with higher accuracy are

$$\begin{aligned} P_0= \begin{pmatrix} 0.134934339930888 \\ 0.003888013139251 \\ 0.117443350170703 \\ 0.000936082833871 \\ 0.216240831347475 \\ 0.101389225000425 \end{pmatrix}, \quad T= 2.998307362412966. \end{aligned}$$

To reproduce the trajectories displayed, one can integrate the following initial values \(P_0\) back and forward in time for the given time T. The starting and ending points of the resulting trajectories will lay on the boundary of the parameterized unstable and stable manifolds, respectively.

$$\begin{aligned} P_0&= \begin{pmatrix} -\,0.585194841158983 \\ 0.650674788263036 \\ -\,0.242897059971999 \\ -\,0.809665850514842 \\ 0.015366927308435 \\ 0.645609803647810 \end{pmatrix}, \quad T= 3.9083,\\ P_0&= \begin{pmatrix} -\,0.010028232796882 \\ 0.018905042025788 \\ -\,0.527614375771166 \\ -\,0.278204402447460 \\ 0.066684862193223 \\ -\,0.421303149345866 \end{pmatrix}, \quad T= 3.5848,\\ P_0&= \begin{pmatrix} 0.364232983907004 \\ 0.282004601213298 \\ 0.365277731376544 \\ 0.566929250936993 \\ 0.188719573086921 \\ -\,0.192150484392393 \end{pmatrix}, \quad T= 4.1378. \end{aligned}$$

The three connecting orbits accumulating to the same periodic orbit and member of the families displayed in Fig. 19 can be found using the following initial condition and integration time.

$$\begin{aligned} P_0&= \begin{pmatrix} -\,0.101146445518484 \\ 0.039260485918423 \\ 0.357723970145646 \\ 0.064390124937530 \\ -\,0.215188925518734 \\ -\,0.117478748772784 \end{pmatrix}, \quad T= 2.3112, \\ P_0&= \begin{pmatrix} 0.292042336892103 \\ 0.003508935985276 \\ 0.118262267817677 \\ -\,0.031322268117327 \\ 0.009128811923180 \\ -\,0.481727032516309 \end{pmatrix}, \quad T= 1.7643, \\ P_0&= \begin{pmatrix} -\,0.082031603660355 \\ -\,0.244810917818636 \\ -\,0.371129071110934 \\ -\,0.141117360021255 \\ 0.090892927654736 \\ -\,0.410662336419204 \end{pmatrix}, \quad T= 2.6543. \end{aligned}$$

In the case of \(L_5\), the connections computed is at \(J= 2.9\), and the initial data for the periodic orbit are given with higher accuracy by

$$\begin{aligned} P_0= \begin{pmatrix} 0.919523300342616 \\ -\,0.018021865086785 \\ -\,0.005720721776858 \\ 0.001586045655911 \\ 0.140748196680255 \\ 0.142288965593486 \end{pmatrix}, \quad T= 5.485186773053060. \end{aligned}$$

The midpoint of each connecting orbit as well as the approximate integrating time needed to reach the boundary of the parameterized manifolds is given by pairs, corresponding to their shape and the figure in which they were presented. The initial data for the connecting orbit displayed in Fig. 16 are given by

$$\begin{aligned} P_0&= \begin{pmatrix} -\,0.221338679671589 \\ 0.290535064047762 \\ 0.807520893403199 \\ -\,0.079212158161279 \\ 0.099168243248453 \\ -\,0.192275633578254 \end{pmatrix}, \quad T= 3.9267,\\ P_0&= \begin{pmatrix} -\,0.027278885368683 \\ -\,0.415243675715196 \\ -\,0.681730123750280 \\ -\,0.689462085636593 \\ 0.002992463395721 \\ 0.060975647933203 \end{pmatrix}, \quad T= 4.1225. \end{aligned}$$

The initial data for the connecting orbit displayed in Fig. 17 are given by

$$\begin{aligned} P_0= \begin{pmatrix} -\,0.093216716467939 \\ 0.539629163160594 \\ 0.029112774416657 \\ 0.487738555586829 \\ 0.028678261003714 \\ -\,0.264834109382665 \end{pmatrix}, \quad T= 5.7103, \\ P_0= \begin{pmatrix} -\,0.369576889105909 \\ -\,0.085470029306448 \\ 0.463741869935280 \\ 0.545543943960734 \\ 0.088979849325104 \\ -\,0.103325348379878 \end{pmatrix}, \quad T= 4.7319. \end{aligned}$$

The initial data for the connecting orbit displayed in Fig. 18 are given by

$$\begin{aligned} P_0&= \begin{pmatrix} 0.497723454800157 \\ 0.803131159532739 \\ 1.346319122336476 \\ -\,0.067118235690442 \\ 0.029291317637547 \\ -\,0.145379858982222 \end{pmatrix}, \quad T= 4.9363, \\ P_0&= \begin{pmatrix} 0.480703865397053 \\ -\,0.766478203112893 \\ -\,1.325717528617470 \\ -\,0.049652453045623 \\ 0.255108298576897 \\ -\,0.003998765894041 \end{pmatrix}, \quad T= 4.9277. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, M., Mireles James, J.D. Homoclinic dynamics in a spatial restricted four-body problem: blue skies into Smale horseshoes for vertical Lyapunov families. Celest Mech Dyn Astr 132, 38 (2020). https://doi.org/10.1007/s10569-020-09977-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-09977-1

Keywords

Mathematics Subject Classification

Navigation