Skip to main content
Log in

Investigation on the Fatigue Crack Propagation Behavior of L360MS Pipeline Steel Welded Joints with Inconel 625 Weld Metal

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study investigated the fatigue crack propagation (FCP) behavior of different regions (base metal (BM), heat-affected zone (HAZ) and weld metal (WM)) of dissimilar metal welded joints of L360MS pipeline steel with Inconel 625 welding wire as the filler material. The effect of the microstructure on FCP was discussed. The results indicated that the fatigue crack growth rates (da/dN) for the WM were lower than those for the BM and the HAZ under the same stress ratio. The microstructures of these regions had different characteristics, such as equiaxed austenite, ferrite and pearlite, which could explain the observed differences in properties. For instance, the FCP path revealed that the existence of ductile equiaxed grains and coarse columnar grains caused the WM to have higher fatigue crack growth resistance and a more tortuous crack propagation path than the BM and the HAZ. The microstructure, grain orientation, strain distribution and grain boundaries around the fatigue crack in the HAZ specimens that propagated through the WM and the fusion line were analyzed by electron backscatter diffraction (EBSD). The results showed that the fatigue cracks followed a zigzag path into the HAZ along the high-angle Type II boundary and Type I boundary in the WM.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li L Y, Xiao J, Han B, and Wang X L, Int J Pres Ves Pip 179 (2020) 104026.

    Google Scholar 

  2. Zhang L J, Pei Q, and Zhang J X, Mater Des 64 (2014) 462.

    CAS  Google Scholar 

  3. Qian X D, Wang Y, Richard Liew J Y, and Zhang M H, Eng Struct 92 (2015) 84.

    Google Scholar 

  4. Wang H T, Wang G Z, Xuan F Z, and Tu S T, Eng Failure Anal 28 (2013) 134.

    CAS  Google Scholar 

  5. Thurston K V S, Gludovatz B, Yu Q, Laplanche G, George E P, and Ritchie R O, J Alloys Compd 794 (2019) 525.

    CAS  Google Scholar 

  6. Kacar R, and Acarer M, J Mater Process Technol 152 (2004) 91.

    CAS  Google Scholar 

  7. Liu H B, Yang S L, Xie C J, Zhang Q, and Cao Y M, J Alloys Compd 741 (2018) 188.

    CAS  Google Scholar 

  8. Karolczuk A, Kowalski M, Bański R, and Żok F, Int J Fatigue 48 (2013) 101.

    CAS  Google Scholar 

  9. Shang Y B, Shi H J, Wang Z X, and Zhang G D, Mater Des 88 (2015) 598.

    CAS  Google Scholar 

  10. Giorgetti V, Santos E A, Marcomini J B, and Sordi V L, Int J Pres Ves Pip 169 (2019) 223.

    CAS  Google Scholar 

  11. Kunnathur P Y, Perumal A. V, and Rajasekaran D, Trans Indian Inst Met 71 (2018) 2575.

    Google Scholar 

  12. Ming H, Zhang Z, Wang J, and Han E H, Mater Charact 148 (2019) 100.

    CAS  Google Scholar 

  13. Hou J, Peng Q J, Takeda Y, Kuniya J, Shoji T, and Wang J Q, J Mater Sci 45 (2010) 5332.

    CAS  Google Scholar 

  14. Öztoprak N, Yeni Ç E, and Kıral B G, Trans Indian Inst Met 72(2) (2019) 511.

    Google Scholar 

  15. Vidyarthy R S, Kulkarni A, and Dwivedi D K, Mater Sci Eng A 695 (2017) 249.

    CAS  Google Scholar 

  16. Brayshaw W J, Cooper A J, and Sherry A H, Eng Failure Anal 97 (2019) 820.

    CAS  Google Scholar 

  17. Yang J, and Wang L, Eng Fract Mech 192 (2018) 12.

    Google Scholar 

  18. Fan K, Wang G Z, Xuan F Z, and Tu S T, Eng Fract Mech 136 (2015) 279.

    Google Scholar 

  19. Blouin A, Chapuliot S, Marie S, Niclaeys C, and Bergheau J. M, Eng Fract Mech 131 (2014) 58.

    Google Scholar 

  20. Thirugnanam A, Sukumaran K, Raghukandan K, Pillai U T S, and Pai B C, Trans Indian Inst Met 58 (2005) 777.

    CAS  Google Scholar 

  21. Yang J, Wang G Z, Xuan F Z, Tu S T, and Liu C J, Mater Des 55 (2014) 542.

    CAS  Google Scholar 

  22. Xie Y, Wu Y Q, Burns J, and Zhang J S, Mater Charact 112 (2016) 87.

    CAS  Google Scholar 

  23. Rathod D W, Pandey S, Singh P K, and Kumar S, J Nucl Mater 493 (2017) 412.

    CAS  Google Scholar 

  24. Ghassen B S, Stéphane C, Arnaud B, Philippe B, and Clémentine J, Procedia Struct Integr 13 (2018) 619.

    Google Scholar 

  25. Wang X F, Shao C D, Liu X, and Lu F G, J Mater Sci Technol 34 (2018) 720.

    Google Scholar 

  26. Du L Y, Wang G Z, Xuan F Z, and Tu S T, Nucl Eng Des 265 (2013) 145.

    CAS  Google Scholar 

  27. Velu M., Mater Today Proc 5(5) (2018) 11364.

    CAS  Google Scholar 

  28. Kangazian J, and Shamanian M, Mater Charact 155 (2019) 109802.

    CAS  Google Scholar 

  29. Dong L J, Peng Q J, Han E H, Ke W, and Wang L, J Mater Sci Technol 34(8) (2018) 1281.

    Google Scholar 

  30. Zhu R L, Wang J Q, Zhang Z M, and Han E H, Corros Sci 120 (2017) 219.

    CAS  Google Scholar 

  31. Zhu R L, Wang J Q, Zhang L T, Zhang Z M, and Han E H, Corros Sci 112 (2016) 373.

    CAS  Google Scholar 

  32. Dong L J, Peng Q J, Xue H, Han E H, Ke W, and Wang L, Corros Sci 132 (2018) 9.

    CAS  Google Scholar 

  33. Huang J Y, Chiang M F, Jeng S L, Huang J S, and Kuo R C, J Nucl Mater 432 (2013) 189.

    CAS  Google Scholar 

  34. Yeh T K, Huang G R, Wang M Y, and Tsai C H, Prog nucl Energ 63 (2013) 7.

    CAS  Google Scholar 

  35. Cortés R, Rodríguez N K, Ambriz R R, López V H, Ruiz A, and Jaramillo D, Mater Sci Eng A 745 (2019) 20.

    Google Scholar 

  36. Wang B, Lei B B, Wang W, Xu M, and Wang L, Eng Failure Anal 58 (2015) 56.

    CAS  Google Scholar 

  37. Jang C, Cho P Y, Kim M, Oh S J, and Yang J S, Mater Des 31 (2010) 1862.

    CAS  Google Scholar 

  38. Wang W, Liu T G, Cao X Y, Lu Y H, and Shoji T, Mater Sci Eng A 729 (2018) 331.

    CAS  Google Scholar 

  39. Ki H, Kim C.S, Jeon Y.C, and Kwun S I, Mater. Sci. Forum 580-582 (2008) 593.

    Google Scholar 

  40. Huang J Y, Young M C, Jeng S L, Yeh J J, Huang J S, and Kuo R C,Mater Trans 49 (2008) 1667.

    CAS  Google Scholar 

  41. Nelson T W, Lippold J C, and Mills M J. Sci Technol Weld Joi 3(5) (2013) 249.

    Google Scholar 

  42. Wang C X, Wang T, Cao L L, and Zhang G J, J Alloys Compd 790 (2019) 563.

    CAS  Google Scholar 

  43. Hou J, Peng Q J, Lu Z P, Shoji T, Wang J Q, Han E H, and Ke W, Corros Sci 53 (2011) 1137.

    CAS  Google Scholar 

  44. Hou J, Peng Q J, Takeda Y, Kuniya J, and Shoji T, Corros Sci 52 (2010) 3949.

    CAS  Google Scholar 

  45. Sarikka T, Ahonen M, Mouginot R, Nevasmaa P, Karjalainen-Roikonen P, Ehrnstén U, and Hänninen H, Int J Pres Ves Pip 145 (2016) 13.

    CAS  Google Scholar 

  46. Hong H L, Zhu R L, Zhang Z M, Wang J Q, Han E H, Ke W, and Su M X, Mater Sci Eng A 669 (2016) 279.

    Google Scholar 

  47. Shenoy M M, Kumar R S, and McDowell D L, Int J Fatigue 27 (2005) 113.

    CAS  Google Scholar 

  48. Smith R A, Int J Fracture 9(3) (1973) 352.

    Google Scholar 

  49. Yanagimotoa F, Hemmi T, Suzuki Y, Takashim Y, Kawabata T, and Shibanuma K, Acta Mater 177 (2019) 96.

    Google Scholar 

  50. Guan M F, and Yu H. Sci China Technol Sci 56 (2013) 71.

    CAS  Google Scholar 

  51. Wert J A, and Huang X, Philos Mag 83 (2003) 969.

    CAS  Google Scholar 

  52. Winther G, Acta Mater 51 (2003) 417.

    CAS  Google Scholar 

  53. Hu D Y, and Wang R Q, Mater Sci Eng A 515 (2009) 183.

    Google Scholar 

  54. Xiao X P, Yi Z Y, Chen T T, Liu R Q, and Wang H, J Alloys Compd 660 (2016) 178.

    CAS  Google Scholar 

  55. Goldsmith N T, Wanhill R J H, and Molent L, Eng Failure Anal 96 (2019) 426.

    Google Scholar 

  56. Ivanova V S, Kunavin S A, and Shanjavskij A A, Proceedings of The 7th International Conference On Fracture (ICF7), Pergamon, Oxford (1989), p 3677.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, B., Xu, Y. et al. Investigation on the Fatigue Crack Propagation Behavior of L360MS Pipeline Steel Welded Joints with Inconel 625 Weld Metal. Trans Indian Inst Met 73, 2387–2402 (2020). https://doi.org/10.1007/s12666-020-02041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02041-4

Keywords

Navigation