Skip to main content
Log in

On First Integrals of Two-Dimensional Geodesic Flows

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the first integrals polynomial and rational in momenta of the geodesic flows (including those in a magnetic field) on two-dimensional surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozlov V. V., “Topological obstacles to the integrability of natural mechanical systems,” Soviet Math. Dokl., vol. 206, no. 6, 1413–1415 (1979).

    MathSciNet  MATH  Google Scholar 

  2. Kozlov V. V.,Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Springer, Berlin (1996).

    Book  Google Scholar 

  3. Kolokoltsov V. N., “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities,” Math. USSR-Izv., vol. 21, no. 2, 291–306 (1983).

    Article  Google Scholar 

  4. Bolsinov A. V., Kozlov V. V., and Fomenko A. T., “The Maupertuis principle and geodesic flows on a sphere arising from integrable cases in the dynamics of a rigid body,” Russian Math. Surveys, vol. 50, no. 3, 473–501 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. Denisova N. V. and Kozlov V. V., “Polynomial integrals of geodesic flows on a two-dimensional torus,” Russian Acad. Sci. Sb. Math., vol. 83, no. 2, 469–481 (1995).

    MathSciNet  Google Scholar 

  6. Kozlov V. V. and Treschev D. V., “On the integrability of Hamiltonian systems with toral position space,” Math. USSR Sb., vol. 63, no. 1, 121–139 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bialy M. L. and Mironov A. E., “Rich quasi-linear system for integrable geodesic flow on 2-torus,” Discrete Contin. Dyn. Syst. A, vol. 29, no. 1, 81–90 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bialy M. L. and Mironov A. E., “Integrable geodesic flows on 2-torus: formal solutions and variational principle,” J. Geom. Phys., vol. 87, 39–47 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bialy M. L. and Mironov A. E., “Cubic and quartic integrals for geodesic flow on 2-torus via a system of the hydrodynamic type,” Nonlinearity, vol. 24, no. 12, 3541–3554 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bagderina Yu. Yu., “Rational integrals of the second degree of two-dimensional geodesic equations,” Sib. Electron. Math. Rep., vol. 14, 33–40 (2017).

    MathSciNet  MATH  Google Scholar 

  11. Collinson C. D., “A note on the integrability conditions for the existence of rational first integrals of the geodesic equations in a Riemannian space,” Gen. Relativity Gravitation, vol. 18, no. 2, 207–214 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. Collinson C. D. and O’Donnell P. J., “A class of empty spacetimes admitting a rational first integral of the geodesic equation,” Gen. Relativity Gravitation, vol. 24, no. 4, 451–455 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. Combot Th., “Rational integrability of trigonometric polynomial potentials on the flat torus,” Regul. Chaotic Dyn., vol. 22, no. 4, 386–397 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. Heilbronn G.,Intégration des équations différentielles ordinaires par la méthode de Drach, Gauthier-Villars, Paris (1956).

    MATH  Google Scholar 

  15. Pavlov M. V. and Tsarev S. P., “Classical mechanical systems with one-and-a-half degrees of freedom and Vlasov kinetic equation,” in: Topology, Geometry, Integrable Systems, and Mathematical Physics. Novikov’s seminar: 2012–2014. Selected papers of the seminar, Moscow, Russia, 2012–2014. Dedicated to S. P. Novikov on the occasion of his 75th birthday, Amer. Math. Soc., Providence (2014), 337–371.

  16. Maciejewski A. J. and Przybylska M., “Darboux polynomials and first integrals of natural polynomial Hamiltonian systems,” Phys. Lett. A, vol. 326, no. 3–4, 219–226 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. Agapov S. V., “Rational integrals of a natural mechanical system on the 2-torus,” Sib. Math. J., vol. 61, no. 2, 199–207 (2020).

    Article  MATH  Google Scholar 

  18. Kozlov V. V., “On rational integrals of geodesic flows,” Regul. Chaotic Dyn., vol. 19, no. 6, 601–606 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. Aoki A., Houri T., and Tomoda K., “Rational first integrals of geodesic equations and generalised hidden symmetries,” Classical Quantum Gravity, vol. 33, no. 19, 195003, 12 pp. (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. Hietarinta J., “New integrable Hamiltonians with transcendental invariants,” Phys. Rev. Lett., vol. 52, no. 1057, 1057–1060 (1984).

    Article  MathSciNet  Google Scholar 

  21. Perelomov A. M.,Integrable Systems of Classical Mechanics and Lie Algebras, Birkhäuser, Basel, Boston, and Berlin (2012).

    Google Scholar 

  22. Ten V. V., “Polynomial first integrals for systems with gyroscopic forces,” Math. Notes, vol. 68, no. 1, 135–138 (2000).

    MathSciNet  MATH  Google Scholar 

  23. Taimanov I. A., “On first integrals of geodesic flows on a two-torus,” Proc. Steklov Inst. Math., vol. 295, no. 1, 225–242 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. Agapov S. and Valyuzhenich A., “Polynomial integrals of magnetic geodesic flows on the 2-torus on several energy levels,” Discrete Contin. Dyn. Syst. A, vol. 39, no. 11, 6565–6583 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. Dorizzi B., Grammaticos B., Ramani A., and Winternitz P., “Integrable Hamiltonian systems with velocity-dependent potentials,” J. Math. Phys., vol. 26, no. 12, 3070–3079 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  26. Agapov S. V., Bialy M., and Mironov A. E., “Integrable magnetic geodesic flows on 2-torus: new examples via quasi-linear system of PDEs,” Comm. Math. Phys., vol. 351, no. 3, 993–1007 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  27. Bialy M. L., “Rigidity for periodic magnetic fields,” Ergodic Theory Dynam. Systems, vol. 20, no. 6, 1619–1626 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. Bialy M. L. and Mironov A. E., “New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces,” Cent. Eur. J. Math., vol. 10, no. 5, 1596–1604 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. Bolotin S. V., “First integrals of systems with gyroscopic forces,” Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., vol. 6, 75–82 (1984).

    MathSciNet  MATH  Google Scholar 

  30. Bolsinov A. V. and Jovanovic B., “Magnetic geodesic flows on coadjoint orbits,” J. Phys. Math. A, vol. 39, L247–L252 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  31. Burns K. and Matveev V. S., “On the rigidity of magnetic systems with the same magnetic geodesics,” Proc. Amer. Math. Soc., vol. 134, 427–434 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  32. Efimov D. I., “The magnetic geodesic flow in a homogeneous field on the complex projective space,” Sib. Math. J., vol. 45, no. 3, 465–474 (2004).

    Article  MathSciNet  Google Scholar 

  33. Efimov D. I., “The magnetic geodesic flow on a homogeneous symplectic manifold,” Sib. Math. J., vol. 46, no. 1, 83–93 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  34. Taimanov I. A., “On an integrable magnetic geodesic flow on the two-torus,” Regul. Chaotic Dyn., vol. 20, no. 6, 667–678 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  35. Tsarev S. P., “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method,” Math. USSR-Izv., vol. 37, no. 2, 397–419 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  36. Rozhdestvenskii B. L. and Yanenko N. N.,Systems of Quasilinear Equations and Their Applications to Gas Dynamics [Russian], Nauka, Moscow (1968).

    MATH  Google Scholar 

  37. Khairullin R. S., “On the theory of the Euler–Poisson–Darboux equation,” Russian Math. (Iz. VUZ), vol. 37, no. 11, 67–74 (1993).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Sections 2 and 4 were supported by the Laboratory of Topology and Dynamics of Novosibirsk State University (Contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation). Section 3 was supported by the RFBR Grant 18–01–00411 “Nonlinear Systems and Geometry.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Agapov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agapov, S.V. On First Integrals of Two-Dimensional Geodesic Flows. Sib Math J 61, 563–574 (2020). https://doi.org/10.1134/S0037446620040011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620040011

Keywords

UDC

Navigation