Skip to main content
Log in

Small-Scale Reactional Features in Abyssal Peridotites from the Mid-Atlantic Ridge at 17°04′ to 17°10′ N

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Serpentinized peridotites (lherzolite to harzburgite) with relict coarse-grained protogranular and porphyroclastic matrix and locally developed fine-grained spinel–pyroxene microstructures were sampled from a previously unknown tectonic exposure of the Mid-Atlantic Ridge (17°04′–17°10′ N). The mineral composition of the coarse-grained relics is typical of abyssal residual peridotites and corresponds to 13–14% fractional melting. Fine-grained spinel-pyroxene (spinel–orthopyroxene and spinel–two-pyroxene) intergrowths are regarded as traces left by peridotite interaction with an interstitial melt during the transition to the lithospheric conductive cooling at temperature of 1100–1000°C. The peridotite–melt interaction resulted in the partial orthopyroxene dissolution, local crystallization of spinel ± clinopyroxene, and uneven decrease of Al and Cr contents in both pyroxenes and Cr/Al ratio in spinel. An additional signature of the reaction melt is an overall trend of enrichment in magmatic components: clinopyroxene in REE and spinel in Zn. The inferred interstitial reaction melt was significantly depleted in incompatible elements compared to MORB-type melts. Further lithospheric cooling favored “freezing” of mineral assemblages and small-scale reactional features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The textural features of the studied peridotites are shown in Figs. ESM_1.pdf—ESM_3.pdf (Suppl. 1) to the Russian and English on-line version on sites https://elibrary.ru/ and http:// link.springer.com/, respectively.

  2. Chemical compositions of minerals and studied peridotites are shown in Tables ESM_4.xls—ESM_7.xls (Suppl. 2) to the Russian and English online versions on sites https://elibrary.ru/ and http://link.springer.com/, respectively.

REFERENCES

  1. Aranovich, L.Ya., Mineral’nye ravnovesiya mnogokomponentnykh tverdykh rastvorov (Mineral Equilibria of Multicomponent Solid Solutions), Moscow: Nauka, 1991.

  2. Aranovich, L.Ya. and Kosyakova, N.A., Garnet–spinel geothermometer for deep-seated rocks, Dokl. Akad. Nauk SSSR, 1980, vol. 254, no. 4, pp. 978–981.

    Google Scholar 

  3. Aranovich, L.Y. and Berman, R.G., Optimized standard state and solution properties of minerals, Contrib. Mineral. Petrol., 1996, vol. 126, nos 1-2, pp. 25–37.

    Google Scholar 

  4. Aranovich, L.Y. and Berman, R.G., A new garnet–orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene, Am. Mineral., 1997, vol. 82, pp. 345–353.

    Google Scholar 

  5. Asimow, P.D., A model that reconciles major-and trace-element data from abyssal peridotites, Earth Planet. Sci. Lett., 1999, vol. 169, nos. 3–4, pp. 303–319.

    Google Scholar 

  6. Botazzi, P., Ottolini, L., Vannucci, R., and Zanetti, A., An accurate procedure for the quantification of rare earth elements in silicates, Proceedings of the Ninth International Conference on Secondary Ion Mass Spectrometry-SIMS IX, Benninghoven, A., Nihei, R., and Shimizu, R., Chichester: John Wiley, 1994.

  7. Brunelli, D., Cipriani, A., Ottolini, L., et al., Mantle peridotites from the Bouvet triple junction region, South Atlantic, Terra Nova, 2003, vol. 15, no. 3, pp. 194–203.

    Google Scholar 

  8. Brunelli, D., Seyler, M., Cipriani, A., et al., Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge), J. Petrol., 2006, vol. 47, no. 4, pp. 745–771.

    Google Scholar 

  9. Brunelli, D., Paganelli, E., and Seyler, M., Percolation of enriched melts during incremental open-system melting in the spinel field: a REE approach to abyssal peridotites from the Southwest Indian Ridge, Geochim. Cosmochim. Acta, 2014, vol. 127, pp. 190–203.

    Google Scholar 

  10. Dick, H.J., Fisher, R.L., and Bryan, W.B., Mineralogic variability of the uppermost mantle along mid-ocean ridges, Earth Planet. Sci. Lett., 1984, vol. 69, no. 1, pp. 88–106.

    Google Scholar 

  11. Dick, H.J., Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism, Geol. Soc. London. Spec. Publ., 1989, no. 42, pp. 71–105.

  12. D’Errico, ME., Warren, JM., and Godard, M., Evidence for chemically heterogeneous arctic mantle beneath the Gakkel Ridge, Geochim. Cosmochim. Acta, 2016, vol. 174, pp. 291–312.

    Google Scholar 

  13. Falus, G., Szabó, C., Kovács, I., et al., Symplectite in spinel lherzolite xenoliths from the Little Hungarian plain, western Hungary: a key for understanding the complex history of the upper mantle of the Pannonian Basin, Lithos, 2007, vol. 94, no. 1, pp. 230–247.

    Google Scholar 

  14. Gasparik, T., An internally consistent thermodynamic model for the system cao-mgo-al2o3-SiO2 derived primarily from phase equilibrium data, J. Geol., 2000, vol. 108, pp. 103–119.

    Google Scholar 

  15. Ghose, I., Cannat, M., and Seyler, M., Transform fault effect on mantle melting in the mark area (Mid-Atlantic Ridge south of the Kane Transform), Geology, 1996, vol. 24, no. 12, pp. 1139–1142.

    Google Scholar 

  16. Godard, M., Jousselin, D., and Bodinier, J.L., Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite, Earth Planet. Sci. Lett., 2000, vol. 180, nos. 1–2, pp. 133–148.

    Google Scholar 

  17. O’Hara, M.J., Richardson, S.W., and Wilson, G., Garnet-peridotite stability and occurrence in crust and mantle, Contrib. Mineral. Petrol., 1971, vol. 32, no. 1, pp. 48–68.

    Google Scholar 

  18. Hellebrand, E., Snow, J.E., Dick, H.J., and Hofmann, A.W., Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites, Nature, 2001, vol. 410, no. 6829, pp. 677–681.

    Google Scholar 

  19. Hellebrand, E., Snow, J.E., Hoppe, P., and Hofmann, A.W., Garnet-field melting and late-stage refertilization in residual abyssal peridotites from the Central Indian Ridge, J. Petrol., 2002, vol. 43, no. 12, pp. 2305–2338.

    Google Scholar 

  20. Hofmann, A.W., Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 297–314.

    Google Scholar 

  21. Irving, A.J. and Frey, F.A., Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1201–1221.

    Google Scholar 

  22. Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites, J. Geophys. Res.: Solid Earth, 1990, vol. 95, no. B3, pp. 2661–2678.

    Google Scholar 

  23. Karson, J.A. and Lawrence, R.M., Tectonic setting of serpentinite exposures on the western median valley wall of the MARK area in the vicinity of site 920, Proceedings-Ocean Drilling Program Scientific Results.National Science Foundation, 1997, pp. 5–22.

    Google Scholar 

  24. Kelemen, P.B., Shimizu, N., and Salters, V.J.M., Focused flow of melt in the upper mantle: extraction ofmorb beneath oceanic spreading ridges, Mineral. Mag., 1994, vol. A, pp. 466–467.

    Google Scholar 

  25. Komor, S.C., Abyssal peridotite from ODP hole 670a (21°10′ N, 45°02′ W): residues of mantle melting exposed by non-constructive axial divergence, Proceedings of the Ocean Drilling Program, Scientific Results, 1990, vol. 106, pp. 85–101.

  26. Kosyakova, N.A., Aranovich, L.Ya., and Podlesskii, K.K., Equilibria of aluminous spinel with orthopyroxene in the system FeO–MgO–Al2O3–SiO2: new experimental data and thermodynamic assessment, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 57–61.

    Google Scholar 

  27. Liermann, H.P. and Ganguly, J., Fe2+–Mg fractionantion between orthopyroxene and spinel: experimental calibration in the system FeO–MgO–Al2O3–Cr2O3–SiO2, and application, Contrib. Mineral. Petrol., 2003, vol. 145, pp. 217–227.

    Google Scholar 

  28. Malaviarachchi, S.P.K., Makishima, A., and Nakamura, E., Melt–peridotite reactions and fluid metasomatism in the upper mantle, revealed from the geochemistry of peridotite and gabbro from the Horoman peridotite massif, Japan, J. Petrol., 2010, vol. 51, no. 7, pp. 1417–1445.

    Google Scholar 

  29. McCaig, A.M., Cliff, R.A., Escartin, J., et al., Oceanic detachment faults focus very large volumes of Black Smoker fluids, Geology, 2007, vol. 35, no. 10, pp. 935–938.

    Google Scholar 

  30. Michael, P.J. and Bonatti, E., Petrology of ultramafic rocks from sites 556, 558 and 560 DSDP, leg 82, Init. Rep. Deep Sea Drilling Project, 1985, vol. 82, pp. 523–528.

    Google Scholar 

  31. Morishita, T. and Arai, S., Evolution of spinel–pyroxene symplectite in spinel–lherzolites from the Horoman Complex, Japan, Contrib. Mineral. Petrol., 2003, vol. 144, no. 5, pp. 509–522.

    Google Scholar 

  32. Nicolas, A., Structures of Ophiolites and Synamics of Oceanic Lithosphere, Springer Science & Business Media, 2012.

    Google Scholar 

  33. Niu, Y., Langmuir, C.H., and Kinzler, R.J., The origin of abyssal peridotites: a new perspective, Earth Planet. Sci. Lett., 1997, vol. 152, nos. 1–4, pp. 251–265.

    Google Scholar 

  34. Obata, M. and Ozawa, K., Topotaxic relationships between spinel and pyroxene in kelyphite after garnet in mantle-derived peridotites and their implications to reaction mechanism and kinetics, Mineral. Petrol., 2011, vol. 101, nos. 3–4, pp. 217–224.

    Google Scholar 

  35. Odashima, N., Morishita, T., Ozawa, K., et al., Formation and deformation mechanisms of pyroxene–spinel symplectite in an ascending mantle, the Horoman peridotite complex, Japan: an EBSD (electron backscatter diffraction) study, J. Mineral. Petrol. Sci., 2008, vol. 103, no. 1, pp. 1–15.

    Google Scholar 

  36. Pattison, D.R. and Bégin. N.J., Zoning patterns in orthopyroxene and garnet in granulites: implications for geothermometry, J. Metamorph. Geol., 1994, vol. 12, no. 4, pp. 387–410.

    Google Scholar 

  37. Pertsev, A.N., Bortnikov, N.S., Aranovich, L.Ya., et al., Peridotite–melt interaction under transitional conditions between the spinel and plagioclase facies beneath the Mid-Atlantic Ridge: insight from peridotites at 13° N, Petrology, 2009, vol. 17, no. 2, pp. 124–137.

    Google Scholar 

  38. Petersen, S., Kuhn, K., Kuhn, T., et al., The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation, Lithos, 2009, vol. 112, nos. 1–2, pp. 40–56.

    Google Scholar 

  39. Rampone, E., Romairone, A., and Hofmann, A.W., Contrasting bulk and mineral chemistry in depleted mantle peridotites: evidence for reactive porous flow, Earth Planet. Sci. Lett., 2004, vol. 218, nos. 3–4, pp. 491–506.

    Google Scholar 

  40. Reiners, P.W., Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas, J. Petrol., 1998, vol. 39, no. 5, pp. 1039–1061.

    Google Scholar 

  41. Searle, R.C. Murton, B.J., et al., Life cycle of oceanic core complexes, Earth Planet. Sci. Lett., 2009, vol. 287, nos. 3–4, pp. 333–344.

    Google Scholar 

  42. Seyler, M., Toplis, M.J., Lorand, J.P., et al., Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites, Geology, 2001, vol. 29, no. 2, pp. 155–158.

    Google Scholar 

  43. Seyler, M., Cannat, M., and Mevel, C., Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68° E), Geochem., Geophys., Geosyst., 2003, vol. 4, no. 2. https://doi.org/10.1029/2002GC000305

  44. Seyler, M., Lorand, J.P., Dick, H.J., and Drouin, M., Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20′ N: ODP hole 1274a, Contrib. Mineral. Petrol., 2007, vol. 153, no. 3, pp. 303–319.

    Google Scholar 

  45. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chacogenides, Acta Crystallogr. Sect. A, 1976, vol. 32, pp. 751–767.

    Google Scholar 

  46. Shimizu, N. and Hart, S.R., Application of the ion microprobe to geochemistry and cosmochemistry, Annu. Rev. Earth Planet. Sci., 1982, vol. 10, pp. 483–526.

    Google Scholar 

  47. Shimizu, Y., Arai, S., Morishita, T., and Ishida, Y., Origin and significance of spinel–pyroxene symplectite in lherzolite xenoliths from tallante, SE Spain, Mineral. Petrol., 2008, vol. 94, nos. 1–2, pp. 27–43.

    Google Scholar 

  48. Smith, D.K., Escartin, J., Schouten, H., and Cann, J.R., Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15° N), Geochem., Geophys., Geosyst., 2008, vol. 9, no. 3. https://doi.org/10.1029/2007GC001699

  49. Sobolev, A.V., Melt inclusions in minerals as a source of principal petrological information, Petrology, 1996, vol. 4, pp. 228–239.

    Google Scholar 

  50. Stephens, C.J., Heterogeneity of oceanic peridotite from the Western Canyon wall at mark: results from site 920, Proceedings of the Ocean Drilling Program, Scientific Results, 1997, vol. 153, pp. 285–303.

  51. Suhr, G., Melt migration under oceanic ridges: inferences from reactive transport modelling of upper mantle hosted dunites, J. Petrol., 1999, vol. 40, no. 4, pp. 575–599.

    Google Scholar 

  52. Suhr, G., Kelemen, P., and Paulick, H., Microstructures in hole 1274a peridotites, ODP leg 209, Mid-Atlantic Ridge: tracking the fate of melts percolating in peridotite as the lithosphere is intercepted, Geochem., Geophys., Geosyst., 2008, vol. 9, no. 3. https://doi.org/10.1029/2007gc001726

  53. Sun, S.-S. and McConough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D. and Norry, V.J., Eds., Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  54. Walter, M.J., Melt extraction and compositional variability in mantle lithosphere, Treatise on Geochemistry, 2003, vol. 2, pp. 363–393.

    Google Scholar 

  55. Wang, J., Zhou, H., Salters, V., et al., Mantle melting variation and refertilization beneath the Dragon Bone amagmatic segment (53° E SWIR): major and trace element compositions of peridotites at ridge flanks, Lithos, 2019, vol. 324, pp. 325–339.

    Google Scholar 

  56. Wood, B.J. and Blundy, J.D., A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt, Contrib. Mineral. Petrol., 1997, vol. 129, pp. 166–181.

    Google Scholar 

  57. Yoder, H.S., Generation of Basaltic Magma, Washington, DC: National Academy of Sciences, 1976.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge L.Y. Aranovich for helpful discussions S.A. Silantyev, G.V. Ledneva, and anonymous reviewer are thanked for critical reviews of the first version of the manuscript.

Funding

This work was made in the framework of the State Task of IGEM RAS (project no. 0136-2018-0025) and was financially supported by the Russian Foundation for Basic Research (project nos. 18-05-00861 and 18-05-00691). Expedition works (Cruise 37th of the R/V Professor Logachev) were financed by the Federal Agency on Nature Management, Ministry of Natural Resources and Ecology of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pertsev.

Additional information

Translated by M. Bogina

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pertsev, A.N., Beltenev, V.E. Small-Scale Reactional Features in Abyssal Peridotites from the Mid-Atlantic Ridge at 17°04′ to 17°10′ N. Petrology 28, 389–401 (2020). https://doi.org/10.1134/S0869591120040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120040062

Keywords:

Navigation