Skip to main content
Log in

Characterization of the primate TRIM gene family reveals the recent evolution in primates

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The tripartite motif (TRIM) gene family encodes diverse distinct proteins that play important roles in many biological processes. However, the molecular evolution and phylogenetic relationships of TRIM genes in primates are still elusive. We performed a genomic approach to identify and characterize TRIM genes in human and other six primate genomes. In total, 537 putative functional TRIM genes were identified and TRIM members varied among primates. A neighbor joining (NJ) tree based on the protein sequences of 82 human TRIM genes indicates seven TRIM groups, which is consistent with the results based on the architectural motifs. Many TRIM gene duplication events were identified, indicating a recent expansion of TRIM family in primate lineages. Interestingly, the chimpanzee genome shows the greatest TRIM gene expansion among the primates; however, its congeneric species, bonobo, has the least number of TRIM genes and no duplication event. Moreover, we identified a ~ 200 kb deletion on chromosome 11 of bonobos that results in a loss of cluster3 TRIM genes. The loss of TRIM genes might have occurred within the last 2 mys. Analysis of positive selection recovered 9 previously reported and 21 newly identified positively selected TRIM genes. In particular, most positive selected sites are located in the B30.2 domains. Our results have provided new insight into the evolution of primate TRIM genes and will broaden our understanding on the functions of the TRIM family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data accessibility

This article does not report new empirical data or software.

References

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(suppl_2):W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr SD, Smiley JR, Bushman FD (2008) The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog 4(2):e1000007

    PubMed  PubMed Central  Google Scholar 

  • Biris N, Tomashevski A, Bhattacharya A, Diaz-Griffero F, Ivanov DN (2013) Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. J Mol Biol 425(24):5032–5044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Black LR, Aiken C (2010) TRIM5α disrupts the structure of assembled HIV-1 capsid complexes in vitro. J Virol 84(13):6564–6569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boesch C, Hohmann G, Marchant L (2003) Behavioural diversity in chimpanzees and bonobos. Cambr Univ Press 109:455–456

    Google Scholar 

  • Borden KL (1998) RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochem Cell Biol 76(2–3):351–358

    CAS  PubMed  Google Scholar 

  • Boudinot P, Van Der Aa LM, Jouneau L, Du Pasquier L, Pontarotti P, Briolat V et al (2011) Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish. PLoS ONE 6(7):e22022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94

    CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F et al (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30–W38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    CAS  PubMed  Google Scholar 

  • Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D et al (2011) Ensembl 2012. Nucleic Acids Res 40(D1):D84–D90

    PubMed  PubMed Central  Google Scholar 

  • Gokcumen O, Babb PL, Iskow RC, Zhu Q, Shi X, Mills RE et al (2011) Refinement of primate copy number variation hotspots identifies candidate genomic regions evolving under positive selection. Genome Biol 12(5):1–11

    CAS  Google Scholar 

  • Gruber H, Clay ZA (2016) Comparison between bonobos and chimpanzees: a review and update. Evol Anthropol 25:239–252

    PubMed  Google Scholar 

  • Gu Z, Cavalcanti A, Chen F-C, Bouman P, Li W-H (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19(3):256–262

    CAS  PubMed  Google Scholar 

  • Guimarães DS, Gomes MD (2018) Expression, purification, and characterization of the TRIM49 protein. Protein Expres Purif 143:57–61

    Google Scholar 

  • Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19(5):859–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han K, Lou DI, Sawyer SL (2011) Identification of a genomic reservoir for new TRIM genes in primate genomes. PLoS Genet 7(12):e1002388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hare B, Wobber V, Wrangham R (2012) The self-domestication hypothesis: evolution of bonobo psychology is due to selection against aggression. Anim Behav 83(3):573–585

    Google Scholar 

  • Herr AM, Dressel R, Walter L (2009) Different subcellular localisations of TRIM22 suggest species-specific function. Immunogenetics 61(4):271–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang MXHX, Liao BB et al (2017) Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation. Sci Rep-UK 7:42781–42792

    CAS  Google Scholar 

  • Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Ki K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieran M, Short TCC (2006) Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 281:8970–8980

    Google Scholar 

  • Kovalskyy DB, Ivanov DN (2014) Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. Biochemistry 53(9):1466–1476

    CAS  PubMed  Google Scholar 

  • Langergraber KE, Prüfer K, Rowney C, Boesch C, Crockford C, Fawcett K et al (2012) Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci 109(39):15716–15721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(D1):D257–D260

    CAS  PubMed  Google Scholar 

  • Li J, Hana K, Xingc J, Kimd H-S, Rogerse J, Ryderf OA et al (2009) Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene 448(2):242–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhou XZ, Wang BS (2014) Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nat Genet 46:1303–1310

    PubMed  Google Scholar 

  • Maillard PV, Ecco G, Ortiz M, Trono D (2010) The specificity of TRIM5α-mediated restriction is influenced by its coiled-coil domain. J Virol 84(11):5790–5801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malfavon-Borja R, Sawyer SL, Wu LI, Emerman M, Malik HS (2013) An evolutionary screen highlights canonical and noncanonical candidate antiviral genes within the primate TRIM gene family. Genome Biol Evol 5(11):2141–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY et al (2014) CDD: NCBI's conserved domain database. Nucleic Acids Res 43(D1):D222–D226

    PubMed  PubMed Central  Google Scholar 

  • McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC (2013) Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol 14(4):327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meroni G (2012) Genomics and evolution of the TRIM gene family. TRIM/RBCC Proteins, vol 770. Springer, New York, pp 1–9

    Google Scholar 

  • Oteiza A, Mechti N (2015) Control of FoxO4 activity and cell survival by TRIM22 directs TLR3-stimulated cells toward IFN Type I gene induction or apoptosis. J Interf Cytok Res 35(11):859–874

    CAS  Google Scholar 

  • Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR (2014) Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 75:165–183

    PubMed  PubMed Central  Google Scholar 

  • Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3(11):827–837

    CAS  PubMed  Google Scholar 

  • Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B et al (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature 486(7404):527–531

    PubMed  PubMed Central  Google Scholar 

  • Reddy BA, Etkin LD, Freemont PS (1992) A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 17(9):344–345

    CAS  PubMed  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al (2001) The tripartite motif family identifies cell compartments. EMBO J 20(9):2140–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G (2008) Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol 8(1):225–247

    PubMed  PubMed Central  Google Scholar 

  • Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102(8):2832–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer SL, Wu LI, Akey JM, Emerman M, Malik HS (2006) High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5α in humans. Curr Biol 16(1):95–100

    CAS  PubMed  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2007) Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLoS Pathog 3(12):e197

    PubMed  PubMed Central  Google Scholar 

  • Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A et al (2012) New and continuing developments at PROSITE. Nucleic Acids Res 41(D1):D344–D347

    PubMed  PubMed Central  Google Scholar 

  • Song B, Diaz-Griffero F, Park DH, Rogers T, Stremlau M, Sodroski J (2005) TRIM5α association with cytoplasmic bodies is not required for antiretroviral activity. Virology 343(2):201–211

    CAS  PubMed  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34(suppl 2):W609–W612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tocchini C, Ciosk R (2015) TRIM-NHL proteins in development and disease. Semin Cell Dev Biol 47–48:52–59

    PubMed  Google Scholar 

  • Tsai W-W, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S et al (2010) TRIM24 links a non-canonical histone signature to breast cancer. Nature 468(7326):927–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchil PD, Quinlan BD, Chan W-T, Luna JM, Mothes W (2008) TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 4(2):e16

    PubMed  PubMed Central  Google Scholar 

  • Versteeg GA, Benke S, García-Sastre A, Rajsbaum R (2014) InTRIMsic immunity: positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth F R 25(5):563–576

    CAS  Google Scholar 

  • Vikram A, Seung-Zin N, Söding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44(W1):W410–W415

    Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15(5):568–573

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Sun F, Xu S, Fan G et al (2013) Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun 4:2708

    PubMed  Google Scholar 

  • Zhang S, Guo J-T, Wu JZ, Yang G (2013) Identification and characterization of multiple TRIM proteins that inhibit hepatitis b virus transcription. PLoS ONE 8(8):e70001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Ke D, Vu T, Ahn J, Shah VB, Yang R et al (2011) Rhesus TRIM5α disrupts the HIV-1 capsid at the interhexamer interfaces. PLoS Pathog 7(3):e1002009

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was funded by the State Key Program of National Natural Science Foundation of China (Grants no. 31530068), and partial by National Natural Science Foundation of China (no. 31770415) and the Key Research Fund on Sciences and Technologies for Joint Academic Institute and Local Enterprises of Sichuan (2018JZ0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phylogenetic relationships of 537 primate TRIM genes. The unrooted phylogenetic tree was constructed using MEGA 6.0 by Neighbor-Joining method and the bootstrap test was performed with 1,000 iterations. The three groups are indicated as different colors. (TIF 3514 kb)

Fig.S2

The phylogenetic tree of seven primates. Refer to Pozzi et al., 2014 and Li et al., 2009 (TIFF 12 kb)

Supplementary file3 (DOCX 20 kb)

Supplementary file4 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Liu, H., Jian, Z. et al. Characterization of the primate TRIM gene family reveals the recent evolution in primates. Mol Genet Genomics 295, 1281–1294 (2020). https://doi.org/10.1007/s00438-020-01698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01698-2

Keywords

Navigation