Skip to main content
Log in

Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A strategy for amplifying the signal of surface plasmon resonance (SPR) biosensors is reported. Biotinylated phenylalanine (Biotin-Phe) monomers were rapidly self-assembled into nanoparticles in a mild environment. The self-assembled nanoparticles were then used as the carriers of streptavidin-antibody complexes by the streptavidin-biotin interaction. The signal was amplified because of the high molecular weight of the nanoparticle-streptavidin-antibody conjugate. With prostate-specific antigen as a model analyte, the target concentration as low as 1 pg mL−1 was readily measured. The results of the nanoparticle-enhanced SPR biosensor for analysis of serum samples are well consistent with those achieved by the enzyme-linked immunosorbent assays. This work is valuable for designing of various optical and electronic biosensors through the streptavidin-biotin interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997

    Article  CAS  Google Scholar 

  2. Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M (2019) Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Microchim Acta 186:838

    Article  CAS  Google Scholar 

  3. Li P, Huang Z, She Y, Qin S, Gao W, Cao Y, Liu X (2020) An assessment of the interaction for three Chrysanthemum indicum flavonoids and alpha-amylase by surface plasmon resonance. Food Sci Nutr 8:620–628

    Article  CAS  Google Scholar 

  4. Huang X, Hu X, Song S, Mao D, Lee J, Koh K, Zhu Z, Chen H (2020) Triple-enhanced surface plasmon resonance spectroscopy based on cell membrane and folic acid functionalized gold nanoparticles for dual-selective circulating tumor cell sensing. Sensors Actuators B Chem 305:127543

    Article  CAS  Google Scholar 

  5. Karoonuthaisiri N, Charlermroj R, Morton MJ, Oplatowska-Stachowiak M, Grant IR, Elliott C (2014) Development of a M13 bacteriophage-based SPR detection using Salmonella as a case study. Sensors Actuators B Chem 190:214–220

    Article  CAS  Google Scholar 

  6. Mayang Y, He X, Chen L, Zhang Y (2017) Detection of transferrin by using a surface plasmon resonance sensor functionalized with a boronic acid monolayer. Microchim Acta 184:2749–2757

    Article  CAS  Google Scholar 

  7. Śípová H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23

    Article  Google Scholar 

  8. Kim S, Lee HJ (2017) Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay. Anal Chem 89:6624–6630

    Article  CAS  Google Scholar 

  9. Zeng K, Li H, Peng Y (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 184:2637–2644

    Article  CAS  Google Scholar 

  10. Chen F, Wu Q, Song D, Wang X, Ma P, Sun Y (2019) Fe3O4@PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I. Colloids Surf B Biointerfaces 177:105–111

    Article  CAS  Google Scholar 

  11. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  Google Scholar 

  12. Dong H, Zou F, Hu X, Zhu H, Koh K, Chen H (2018) Analyte induced AuNPs aggregation enhanced surface plasmon resonance for sensitive detection of paraquat. Biosens Bioelectron 117:605–612

    Article  CAS  Google Scholar 

  13. Tabasi O, Falamaki C (2018) Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Anal Methods 10:3906–3925

    Article  CAS  Google Scholar 

  14. Damborsk D, Bertok T, Dosekov E, Holazov A, Lorencov L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184:3049–3067

    Article  Google Scholar 

  15. Kim H-M, Park J-H, Jeong DH, Lee H-Y, Lee S-K (2018) Real-time detection of prostate-specific antigens using a highly reliable fiber-optic localized surface plasmon resonance sensor combined with micro fluidic channel. Sensors Actuators B Chem 273:891–898

    Article  CAS  Google Scholar 

  16. Li Q, Dou X, Zhang L, Zhao X, Luo J, Yang M (2019) Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Anal Bioanal Chem 411:6057–6066

    Article  CAS  Google Scholar 

  17. Śípová H, Springer T, Homola J (2011) Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Anal Bioanal Chem 399:2343–2350

    Article  Google Scholar 

  18. Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S (2013) Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta 180:397–403

    Article  CAS  Google Scholar 

  19. Yi X, Hao Y, Xia N, Wang J, Quintero M, Li D, Zhou F (2013) Sensitive and continuous screening of inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem 85:3660–3666

    Article  CAS  Google Scholar 

  20. Xia N, Liu L, Harrington MG, Wang J, Zhou F (2010) Regenerable and simultaneous surface plasmon resonance detection of abeta(1-40) and abeta(1-42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal Chem 82:10151–10157

    Article  CAS  Google Scholar 

  21. Dubacheva GV, Araya-Callis C, Volbeda AG, Fairhead M, Codeé J, Howarth M, Richter RP (2017) Controlling multivalent binding through surface chemistry: model study on streptavidin. J Am Chem Soc 139:4157–4167

    Article  CAS  Google Scholar 

  22. Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Cheng Q, Yan Y (2015) Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182:289–296

    Article  CAS  Google Scholar 

  23. Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43:8150–8177

    Article  CAS  Google Scholar 

  24. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  CAS  Google Scholar 

  25. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82:6401–6408

    Article  CAS  Google Scholar 

  26. Rath D, Kumar S, Panda S (2019) pH-based detection of target analytes in diluted serum samples using surface plasmon resonance immunosensor. Appl Biochem Biotechnol 187:1272–1284

    Article  CAS  Google Scholar 

  27. Jiang Z, Qin Y, Peng Z, Chen S, Chen S, Deng C, Xiang J (2014) The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dual-channel surface plasmon resonance. Biosens Bioelectron 62:268–273

    Article  CAS  Google Scholar 

  28. Ertürk G, Özen H, Aşkın Tümer M, Mattiasson B, DenizliöÜ A (2016) Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sensors Actuators B Chem 224:823–832

    Article  Google Scholar 

  29. Jung J, Na K, Lee J, Kim KW, Hyuna J (2009) Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Anal Chim Acta 651:91–97

    Article  CAS  Google Scholar 

  30. Wang W, Zhu X, Teng S, Xu X, Zhou G (2018) Development and validation of a surface plasmon resonance biosensor for specific detection of porcine serum albumin in food. J AOAC Int 101:1868–1872

    Article  CAS  Google Scholar 

  31. Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–5904

    Article  CAS  Google Scholar 

  32. Choi J-W, Kang D-Y, Jang Y-H, Kim H-H, Min J, Oh B-K (2008) Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle–antibody complex. Colloids Surf A Physicochem Eng Asp 313-314:655–659

    Article  Google Scholar 

  33. Huang L, Reekmans G, Saerens D, Friedt JM, Frederix F, Francis L, Muyldermans S, Campitelli A, Van Hoof C (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21:483–490

    Article  CAS  Google Scholar 

  34. Besselink GAJ, Kooyman RPH, van Os PJHJ, Engbers GHM, Schasfoort RBM (2004) Signal amplification on planar and gel-type sensor surfaces in surface on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal Biochem 333:165–173

    Article  CAS  Google Scholar 

Download references

Funding

Partial support of this work was provided by the National Natural Science Foundation of China (21804002), the First Class Discipline-Chemistry of Guizhou Education University (2019YLXKB03), the Guizhou Education University Doctor Program (2019BS008), and the Research Funds for the Henan Key Laboratory of Biomolecular Recognition and Sensing (HKLBRSK1902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhao or Lin Liu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Zhang, Y., Zhao, F. et al. Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors. Microchim Acta 187, 473 (2020). https://doi.org/10.1007/s00604-020-04461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04461-x

Keywords

Navigation