Skip to main content
Log in

Self-Gravitational Shock Structures in Self-Gravitating, Super-Dense, Degenerate Quantum Plasmas

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The nonlinear propagation of self-gravitational shock structures (SGSSs) in a self-gravitating, super-dense, degenerate quantum plasma system (containing non-degenerate extremely heavy nuclei and ultra-relativistic degenerate electrons) has been investigated. The well-known reductive perturbation technique, which is valid in the small but finite amplitude limit, has been used to examine the nonlinear propagation of these SGSSs in such degenerate quantum plasma systems. The nonlinear dynamics of these SGSSs has been found to be governed by the Burgers equation, which is derived analytically and solved numerically in planar coordinates. These SGSSs in such plasma systems are shown to be formed due to the presence of a viscous force (which is the source of dissipation) acting on inertial extremely heavy nuclei species of the plasma system. The fundamental properties (viz., amplitude, width, speed, etc.) of these SGSSs are influenced in the ultra-relativistic limit. Our considered plasma model and the numerical analysis of the Burgers equation can be applied to astrophysical compact objects like neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. S. Goldberg and M. D. Scadron, Physics of Stellar Evolution and Cosmology (Gordon and Breach Science Publishers, New York, 1987), p. 202.

    Google Scholar 

  2. S. Chandrasekhar, Philos. Mag. 11, 592 (1931).

    Article  Google Scholar 

  3. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  Google Scholar 

  4. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935).

    Google Scholar 

  5. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1939), p. 412.

    MATH  Google Scholar 

  6. S. Chandrasekhar, Phys. Rev. Lett. 12, 114 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Chandrasekhar and R. F. Tooper, Astrophys. J. 139, 1396 (1964).

    Article  ADS  Google Scholar 

  8. D. Koester and G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990).

    Article  ADS  Google Scholar 

  9. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  10. E. Garcia-Berro et al., Nature (London) 465, 194 (2010).

    Article  ADS  Google Scholar 

  11. W. F. El-Taibany and A. A. Mamun, Phys. Rev. E 85, 026406 (2012).

    Article  ADS  Google Scholar 

  12. N. Roy, M. S. Zobaer and A. A. Mamun, J. Mod. Phys. 3, 850 (2012).

    Article  Google Scholar 

  13. A. Rahman, S. Ali, A. Mushtaq and A. Qamar, J. Plasma Phys. 79, 817 (2013).

    Article  ADS  Google Scholar 

  14. A. A. Mamun, Phys. Plasmas 24, 102306 (2017).

    Article  ADS  Google Scholar 

  15. B. Hosen, M. Amina and A. A. Mamun, J. Korean Phys. Soc. 69, 1762 (2016).

    Article  ADS  Google Scholar 

  16. S. A. Ema, M. R. Hossen and A. A. Mamun, Contrib. Plasma Phys. 55, 551 (2015).

    Article  ADS  Google Scholar 

  17. M. Asaduzzaman, A. Mannan and A. A. Mamun, Phys. Plasmas 24, 052102 (2017).

    Article  ADS  Google Scholar 

  18. R. H. Fowler, J. Astrophys. Astron. 15, 115 (1994).

    Article  Google Scholar 

  19. M. R. Hossen, L. Nahar and A. A. Mamun, Phys. Scr. 89, 105603 (2014).

    Article  ADS  Google Scholar 

  20. M. S. Zobaer, N. Roy and A. A. Mamun, Astrophys. Space Sci. 343, 675 (2013).

    Article  ADS  Google Scholar 

  21. R. P. Drake, Phys. Plasmas 16, 055501 (2009).

    Article  ADS  Google Scholar 

  22. R. P. Drake, Phys. Today 63, 28 (2010).

    Article  Google Scholar 

  23. P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 83, 885 (2011).

    Article  ADS  Google Scholar 

  24. A. A. Mamun, M. Amina and R. Schlickeiser, Phys. Plasmas 23, 094503 (2016).

    Article  ADS  Google Scholar 

  25. A. A. Mamun, M. Amina and R. Schlickeiser, Phys. Plasmas 24, 042307 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M. Asaduzzaman is grateful to the Ministry of Science and Technology, Bangladesh, for its financial support through National Science and Technology (NST) fellowship and to the Khulna University of Engineering and Technology (Khulna, Bangladesh) for the study leave during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asaduzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaduzzaman, M., Mamun, A.A. Self-Gravitational Shock Structures in Self-Gravitating, Super-Dense, Degenerate Quantum Plasmas. J. Korean Phys. Soc. 77, 111–115 (2020). https://doi.org/10.3938/jkps.77.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.111

Keywords

Navigation