Skip to main content
Log in

Sub-Band-Gap Photoresponse Caused by Hot Electron Injections in Au Nanorod Decorated van der Waals Semiconductor Monolayers

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Hot electrons in metal nanostructures can be exploited in a wide range of optical functions, including photocatalysis, surface-enhanced Raman scattering, photodetectors and photovoltaics. Here, we report the sub-band-gap (Eg) photoresponse in Au-nanorod decorated van der Waals (vdW) semiconductor, MoS2 and WSe2, monolayers (MLs). We found that hot electrons, optically excited in Au nanorod (NR) arrays at sub-Eg radiations, can be injected into vdW ML semiconductors over Schottky barriers, producing substantial photocurrents in n-type MoS2 and p-type WSe2 ML photodetectors, as well as photovoltages in n-MoS2/p-WSe2 ML stack junctions. Moreover, by using spectrally and light-polarization resolved measurements, we showed that these sub-Eg excitations of hot electrons can be modulated by tuning the plasmon resonance to the shape-controlled AuNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Google Scholar 

  2. A. Splendiani et al., Nano Lett. 10, 1271 (2010).

    ADS  Google Scholar 

  3. S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).

    ADS  Google Scholar 

  4. A. Kuc, N. Zibouche and T. Heine, Phys. Rev. B 83, 245213 (2011).

    ADS  Google Scholar 

  5. W. J. Yu et al., Nat. Nanotechnol. 8, 952 (2013).

    ADS  Google Scholar 

  6. A. Giugni et al., Nat. Nanotechnol. 8, 845 (2013).

    ADS  Google Scholar 

  7. L. Britnell et al., Science 340, 1311 (2013).

    ADS  Google Scholar 

  8. D. Jariwala, A. R. Davoyan, J. Wong and H. A. Atwater, ACS Photonics 4, 2962 (2017).

    Google Scholar 

  9. B. W. H. Baugher, H. O. H. Churchill, Y. Yang and P. Jarillo-Herrero, Nat. Nanotechnol. 9, 262 (2014).

    ADS  Google Scholar 

  10. A. Pospischil, M. M. Furchi and T. Mueller, Nat. Nanotechnol. 9, 257 (2014).

    ADS  Google Scholar 

  11. H. Heo et al., Adv. Mater. 27, 3803 (2015).

    Google Scholar 

  12. G. Jin et al., Sci. Adv. 5, eaaw3180 (2019).

    ADS  Google Scholar 

  13. R. Sundararaman et al., Nat. Commun. 5, 5788 (2014).

    ADS  Google Scholar 

  14. M. L. Brongersma, N. J. Halas and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).

    ADS  Google Scholar 

  15. M. W. Knight, H. Sobhani, P. Nordlander and N. J. Halas, Science 332, 702 (2011).

    ADS  Google Scholar 

  16. W. Li and J. Valentine, Nano Lett. 14, 3510 (2014).

    ADS  Google Scholar 

  17. B. Y. Zheng, Y. Wang, P. Nordlander and N. J. Halas, Adv. Mater. 26, 6318 (2014).

    Google Scholar 

  18. A. Furube et al., Am. Chem. Soc. 129, 14852 (2007).

    Google Scholar 

  19. Y. Li et al., Phys. Chem. C 122, 14857 (2018).

    Google Scholar 

  20. Y. Nishijima et al., Phys. Chem. Lett. 1, 2031 (2010).

    Google Scholar 

  21. C-J. Kim et al., Appl. Phys. Lett. 91, 033104 (2007).

    ADS  Google Scholar 

  22. Q. Sun et al., Light Sci. Appl. 2, e118 (2013).

    Google Scholar 

  23. J-E. Yang, C-B. Jin, C-J. Kim and M-H. Jo, Nano Lett. 6, 2679 (2006).

    ADS  Google Scholar 

  24. C-J. Kim et al., Adv. Mater. 23, 1025 (2011).

    Google Scholar 

  25. J. Ho Sung et al., NPG Asia Mater. 5, e38 (2013).

    ADS  Google Scholar 

  26. W-M. Lee et al., Adv. Mater. 24, OP49 (2012).

    Google Scholar 

  27. S. W. Kim et al., ACS Nano 8, 6556 (2014).

    Google Scholar 

  28. S-Y. Seo et al., Nat. Electron. 1, 512 (2018).

    Google Scholar 

  29. S. Cha et al., Nat. Nanotechnol. 13, 910 (2018).

    ADS  Google Scholar 

  30. H. B. Michaelson, Appl. Phys. 48, 4729 (1977).

    Google Scholar 

  31. W. N. Hansen and K. B. Johnson, Surf. Sci. 316, 373 (1994).

    ADS  Google Scholar 

  32. J. Kang et al., Appl. Phys. Lett. 102, 012111 (2013).

    ADS  Google Scholar 

  33. Y. Liang, S. Huang, R. Soklaski and L. Yang, Appl. Phys. Lett. 103, 042106 (2013).

    ADS  Google Scholar 

  34. C. Gong et al., Appl. Phys. Lett. 103, 053513 (2013).

    ADS  Google Scholar 

  35. C-S. Lee et al., Nano Lett. 19, 1814 (2019).

    ADS  Google Scholar 

  36. A. R. Klots et al., Sci. Rep. 4, 6608 (2014).

    Google Scholar 

  37. K. F. Mak, K. He, J. Shan and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012).

    ADS  Google Scholar 

  38. H. Chen, L. Shao, Q. Li and J. Wang, Chem. Soc. Rev. 42, 2679 (2013).

    Google Scholar 

  39. L. Vigderman and E. R. Zubarev, Chem. Mater. 25, 1450 (2013).

    Google Scholar 

  40. S. Wang et al., Theranostics 5, 251 (2015).

    Google Scholar 

  41. W. Ni, X. Kou, Z. Yang and J. Wang, ACS Nano 2, 677 (2008).

    Google Scholar 

  42. R. Kumar et al., Sci. Rep. 9, 17469 (2019).

    ADS  Google Scholar 

  43. D. Melnikau et al., Nanoscale Res. Lett. 8, 134 (2013).

    ADS  Google Scholar 

  44. Z. Fang et al., Nano Lett. 12, 3808 (2012).

    ADS  Google Scholar 

  45. L. Li et al., Nano Lett. 19, 3295 (2019).

    ADS  Google Scholar 

  46. T. Hong et al., ACS Nano 9, 5357 (2015).

    Google Scholar 

  47. W. Wang et al., Nano Lett. 15, 7440 (2015).

    ADS  Google Scholar 

  48. J. Li et al., Sci. Rep. 6, 23626 (2016).

    ADS  Google Scholar 

  49. B. Shang et al., Nano Lett. 19, 2758 (2019).

    ADS  Google Scholar 

  50. Y. Kang et al., Nanoscale 7, 4482 (2015).

    ADS  Google Scholar 

  51. Y. Li et al., ACS Nano 11, 10321 (2017).

    Google Scholar 

  52. S. Bang et al., Nano Lett. 18, 2316 (2018).

    ADS  Google Scholar 

  53. C-H. Lee et al., Nat. Nanotechnol. 9, 676 (2014).

    ADS  Google Scholar 

  54. O. Lopez-Sanchez et al., Nat. Nanotechnol. 8, 497 (2013).

    ADS  Google Scholar 

  55. A. J. Molina-Mendoza et al., Nat. Commun. 8, 14409 (2017).

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute for Basic Science (IBS), Korea, under Project Code: IBS-R014-A1 and by the POSTECH-Samsung Electronics Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Ho Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jin, G., Park, M.Y. et al. Sub-Band-Gap Photoresponse Caused by Hot Electron Injections in Au Nanorod Decorated van der Waals Semiconductor Monolayers. J. Korean Phys. Soc. 77, 127–132 (2020). https://doi.org/10.3938/jkps.77.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.127

Keywords

Navigation