Skip to main content
Log in

Study on mcl-PHA Production by Novel Thermotolerant Gram-Positive Isolate

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The novel isolated thermotolerant bacteria Bacillus thermoamylovorans strain PHA005 was obtained from palm oil mill effluent. This strain showed an ability to produce medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at 50.77% of dry cell weight (DCW) using sodium octanoate. Therefore, the production of mcl-PHA was enhanced by optimising the effects of nutrients and environmental conditions. The optimal conditions were 3.0 g/L sodium octanoate, a carbon to nitrogen ratio of 5:1 (0.02 g/L ammonium chloride), 45 °C incubation, initial pH 7.0 and agitation speed at 150 rpm. Under optimal conditions, the maximum mcl-PHA accumulation increased from 50.77% to 63.27% of DCW and 2.75 ± 0.03 g/L cell growth, 1.74 ± 0.02 g/L mcl-PHA concentration was achieved after 120 h cultivation. The composition of mcl-PHA contained C8-C18 while 3-hydroxyhexadecanoic (3HHD) was found at the highest composition (39.25 mol%) which has not been previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee SY (1996) Biotechnol Bioeng 49:1

    CAS  PubMed  Google Scholar 

  2. Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503

    CAS  Google Scholar 

  3. Satoh Y, Tajima K, Nakamoto S, Xuerong H, Matsushima T, Ohshima T, Kawano S, Erata T, Dairi T, Munekata M (2011) J Appl Microbiol 111:811

    CAS  PubMed  Google Scholar 

  4. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Metab Eng 10:295

    CAS  PubMed  Google Scholar 

  5. Pantazaki AA, Tambaka MG, Langlois V (2003) Mol Cell Biochem 254:173

    CAS  PubMed  Google Scholar 

  6. Sheu DS, Chen WM, Yang JY (2009) Enzyme Microb Technol 44:289

    CAS  Google Scholar 

  7. Xu F, Huang S, Liu Y (2014) Appl Microbiol Biotechnol 98:3965

    CAS  PubMed  Google Scholar 

  8. Liu Y, Huang S, Zhang Y (2014) J Environ Sci-China 26:1453

    CAS  PubMed  Google Scholar 

  9. Giedraityte G, Kalediene L (2015) Chemija 26:38

    CAS  Google Scholar 

  10. Tajima K, Han X, Hashimoto Y (2016) J Biosci Bioeng 122:660

    CAS  PubMed  Google Scholar 

  11. Choonut A, Prasertsan P, Klomklao S, Sangkharak K (2020) Curr Microbiol, Accepted Manuscript

  12. Jung YM, Park JS, Lee YH (2000) Enzym Microb Technol 26:201

    CAS  Google Scholar 

  13. Steinbuchel A (1992) Appl Microbiol Biotechnol 37:691

    Google Scholar 

  14. Timm A, Byrom D, Steinbuchel A (1990) Appl Microbiol Biotechnol 33:296

    CAS  Google Scholar 

  15. Grothe E, Young MM, Chisti Y (1999) Enzyme Microb Technol 25:132

    CAS  Google Scholar 

  16. Aarthi N, Ramana K (2011) Int J Environ Sci Technol 1:744

    CAS  Google Scholar 

  17. Anbukarasu P, Sauvageau D, Elias A (2015) Sci Rep 5:17884

    PubMed  PubMed Central  Google Scholar 

  18. Sangkharak K, Khaithongkaeo P, Chuaikhunupakarn T, Choonut A, Prasertsan P (2020) Biomass Convers Bioref. https://doi.org/10.1007/s13399-020-00657-6

    Article  Google Scholar 

  19. Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gailard JL, Corroler D (2013) J Biosci Bioeng 116:302

    CAS  PubMed  Google Scholar 

  20. Sangkharak K, Prasertsan P (2012) J Gen Appl Microbiol 58:173

    CAS  PubMed  Google Scholar 

  21. Valappil SP, Rai R, Bucke C, Roy I (2008) J Appl Microbiol 104:1624

    CAS  PubMed  Google Scholar 

  22. Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, Samantaray D (2017) Biochem Biophys Rep 12:206

    PubMed  PubMed Central  Google Scholar 

  23. Chen GQ (2010) Microbiol Monogr 14:17

    Google Scholar 

  24. Wakisaka Y, Masaki E, Nishimoto Y (1982) Appl Environ Microbiol 43:1473

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Bioresour Technol 100:2265

    CAS  PubMed  Google Scholar 

  26. Witholt B, Kessler B (1999) Curr Opin Biotechnol 10:279

    CAS  PubMed  Google Scholar 

  27. Kim DY, Kim HW, Chung MG, Rhee YH (2007) J Microbiol 45:87

    PubMed  Google Scholar 

  28. Mona KG, Swellam AE, Omar SH (2001) Microbiol Res 156:201

    Google Scholar 

  29. Sangkharak K, Prasertsan P (2008) Electron J Biotechnol 11:3

    Google Scholar 

  30. Annuar MSM, Tan IKP, Ibrahim S, Ramachandran KB (2006) Asia Pac J Mol Biol Biotechnol 14:1

    Google Scholar 

  31. Reddy MV, Mohan SV (2012) Bioresour Technol 103:313

    PubMed  Google Scholar 

  32. Phillip R, Joe Kemper G, Schechtman L, Guo L, Satkowski M, Fiedler S, Steinbu A, Rehm BHA (2002) Biomacromolecule 3:208

    Google Scholar 

  33. Paramjit S, Parmar N (2011) Afr J Biotechnol 24:4907

    Google Scholar 

  34. Coorevits A, Logan NA, Dinsdale AE, Halket G, Schleldeman P, Heyndrickz M (2011) Int J Syst Evol Microb 61:1954

    CAS  Google Scholar 

  35. Rehman AU, Alia A, Rushda M, Nauman AM, Rabia A (2016) Pak J Bot 48:349

    Google Scholar 

  36. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2001) Appl Microbiol Biotechnol 81:615

    Google Scholar 

  37. Sriyapai P, Sriyapai T, Samosorn S (2016) Bull Sci J 21:3

    Google Scholar 

  38. Gomaa EZ (2008) Braz Arch Biol Technol 57:145

    Google Scholar 

  39. Palleroni NJ, Palleroni AV (1978) Int J Syst Bacteriol 28:416

    Google Scholar 

  40. Wei YH, Chen WC, Huang CK (2011) Int J Mol Sci 12:252

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kominek LA, Halvorson HO (1965) J Bacteriol 90:1251

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakata HM (1963) J Bacteriol 86:577

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Slodki ME, Cadmus MC (1978) J Appl Microbiol 23:19

    CAS  Google Scholar 

  44. Sangkharak K, Prasertsan P (2013) Biotechnol Bioprocess Eng 18:272

    CAS  Google Scholar 

  45. Neifar M, Naili F, Chouchane H, Cherif A (2018) Adv Tissue Eng Regen Med 4:35

    Google Scholar 

  46. Pirttijarvi TS, Ahonen LM, Maunuksela LM (1998) Int J Food Microbiol 44:31

    CAS  PubMed  Google Scholar 

  47. Tajima K, Han X, Satoh Y (2011) Appl Microbiol Biotechnol 94:365

    Google Scholar 

  48. Shafie NA, Lau NS, Ramachandran H (2017) Genome Announc 5:e01498

    PubMed  PubMed Central  Google Scholar 

  49. Chien CC, Wang LJ, Lin WR (2014) J Taiwan Inst Chem Eng 45:1164

    CAS  Google Scholar 

  50. Takeda M, Kamagata Y, Ghiorse WC (2002) Int J Syst Evol Microb 52:895

    CAS  Google Scholar 

  51. Taran M, Sharifi M, Bagheri B (2011) Clean Technol Environ Policy 13:535

    CAS  Google Scholar 

  52. Xiao Z, Zhang Y, Xi L (2015) J Basic Microbiol 55:1125

    CAS  PubMed  Google Scholar 

  53. Salgaonkar BB, Mani K, Braganca JM (2013) J Appl Microbiol 114:1347

    CAS  PubMed  Google Scholar 

  54. Tajima K, Igari T, Nishimura D (2003) J Biosci Bioeng 95:77

    CAS  PubMed  Google Scholar 

  55. Singh AK, Mallick N (2009) J Ind Microbiol Biotechnol 36:347

    CAS  PubMed  Google Scholar 

  56. Singh AK, Bhati R, Mallick N (2015) Curr Biotechnol 4:65

    CAS  Google Scholar 

  57. Gumel AM, Annuar MSM, Heidelberg T (2012) PLoS ONE 7:e45214

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Munawar KMM, Simarani K, Annuar MSM (2016) Electron J Biotechnol 19:50

    CAS  Google Scholar 

  59. López-Cuellar MR, Alba-Flores J, Rodríguez JNG, Pérez-Guevara F (2011) Int J Biol Macromol 48:74

    PubMed  Google Scholar 

  60. Bhatia SK, Song HU, Jeon JM, Kim J, Lee YK, Kim YG, Yang YH (2017) Int J Biol Macromol 97:710

    PubMed  Google Scholar 

  61. Napper A, Rowland SJ, Thompson CR (2015) Mar Pollut Bull 99:178

    CAS  PubMed  Google Scholar 

  62. Sathiyanarayanana G, Bhatiaa SK, Songa HS, Jeona JM, Kima J, Lee UK, Kimc YG, Yanga YH (2017) Int J Biol Macromol 97:710

    Google Scholar 

  63. Chen J, Zhang L, Chen J, Chen G (2007) Chin J Chem Eng 15:391

    CAS  Google Scholar 

  64. Loureiro NC, Ghosh S, Viana JC, Esteves JL (2015) Polym Plast Technol Eng 54:350

    CAS  Google Scholar 

  65. Kong Y, Hay JN (2002) Polymer 43:3873

    CAS  Google Scholar 

  66. Wellen RMR, Rabello MS, Araujo Júnior IC, Fechine GJM, Canedo EL (2015) Polímeros 25:296

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thailand Research Fund (TRF) Grant for Researcher (project number RSA 6180066), Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailand and Development Institute at Thaksin University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanokphorn Sangkharak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choonut, A., Prasertsan, P., Klomklao, S. et al. Study on mcl-PHA Production by Novel Thermotolerant Gram-Positive Isolate. J Polym Environ 28, 2410–2421 (2020). https://doi.org/10.1007/s10924-020-01779-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01779-8

Keywords

Navigation