Skip to main content
Log in

Fluorine Free Bio-Based Polybenzoxazine Coated Substrates for Oil-Water Separation and Anti-Icing Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Eugenol (E) based mono-functional benzoxazine(E-x) monomers were prepared using different long-chain monoamines(x = ba, ha, dda, oda) and fluorine substituted aromatic monoamine (x = fa). The molecular structure of the monomers developed was characterized by FTIR and NMR spectral analysis. Further, the prepared monomers were coated over the cotton fabric and studied for their surface behavior. The poly(E-dda) coated cotton fabric exhibits the higher value of water contact angle (WCA = 151°) than that of other samples coated with polybenzoxazines(E-ba, E-ha,E-oda, and E-fa). Furthermore, poly(E-dda) coated cotton fabrics also displayed the lower value of surface energy of 15.6 mN/m with a lower sliding angle value(11°) than those of other coated cotton fabric samples. The formation of rough surfaces on the fabric was ascertained from microstructure analysis and thereby contributes to superhydrophobicity along with pH robustness. Subsequently, the oil-water separation efficiency and flux of the poly(E-dda) coated cotton fabric was found to be 98% and 5800 L/m2h respectively. It was also observed that the specimen of a glass substrate coated with poly(E-dda) exhibited the delayed ice formation. Data obtained from different studies, it is suggested that the eugenol-dodecylamine(E-dda) based benzoxazine can be effectively employed as an alternate to fluorine-based polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang CF, Wang YT, Tung PH et al (2006) Stable superhydrophobic polybenzoxazine surfaces over a wide pH range. Langmuir 22:8289–8292. https://doi.org/10.1021/la061480w

    Article  CAS  PubMed  Google Scholar 

  2. Rajamanikam R, Pichaimani P, Kumar M, Muthukaruppan A (2017) Optical and thermomechanical behavior of benzoxazine functionalized ZnO reinforced polybenzoxazine nanocomposites. Polym Compos 38:1881–1889. https://doi.org/10.1002/pc.23758

    Article  CAS  Google Scholar 

  3. Zhang W, Lu X, Xin Z, Zhou C (2016) Development of a superhydrophobic polybenzoxazine surface with self-cleaning and reversible water adhesion properties. RSC Adv 6:106054–106063. https://doi.org/10.1039/C6RA22524A

    Article  CAS  Google Scholar 

  4. Wang CF, Su YC, Kuo SW et al (2006) Low-surface-free-energy materials based on polybenzoxazines. Angew Chem Int Ed 45:2248–2251. https://doi.org/10.1002/anie.200503957

    Article  CAS  Google Scholar 

  5. Xue Z, Wang S, Lin L et al (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270–4273. https://doi.org/10.1002/adma.201102616

    Article  CAS  PubMed  Google Scholar 

  6. Xue Z, Cao Y, Liu N et al (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460

    Article  CAS  Google Scholar 

  7. Broje V, Keller AA (2006) Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol 40:7914–7918. https://doi.org/10.1021/es061842m

    Article  CAS  PubMed  Google Scholar 

  8. Dubansky B, Whitehead A, Miller JT et al (2013) Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ Sci Technol 47:5074–5082. https://doi.org/10.1021/es400458p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gogoi N, Rastogi D, Jassal M, Agrawal AK (2014) Low-surface-energy materials based on polybenzoxazines for surface modification of textiles. J Text Inst 105:1212–1220. https://doi.org/10.1080/00405000.2014.882042

    Article  CAS  Google Scholar 

  10. Zhang T, Yan H, Fang Z et al (2014) Superhydrophobic and conductive properties of carbon nanotubes/polybenzoxazine nanocomposites coated ramie fabric prepared by solution-immersion process. Appl Surf Sci 309:218–224. https://doi.org/10.1016/j.apsusc.2014.05.013

    Article  CAS  Google Scholar 

  11. Zhang W, Lu X, Xin Z, Zhou C (2015) A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 7:19476–19483. https://doi.org/10.1039/c5nr06425b

    Article  CAS  PubMed  Google Scholar 

  12. Caldona EB, De Leon ACC, Thomas PG et al (2017) Superhydrophobic rubber-modified polybenzoxazine/SiO2 nanocomposite coating with anticorrosion, anti-ice, and superoleophilicity properties. Ind Eng Chem Res 56:1485–1497. https://doi.org/10.1021/acs.iecr.6b04382

    Article  CAS  Google Scholar 

  13. Li Y, Yu Q, Yin X et al (2018) Fabrication of superhydrophobic and superoleophilic polybenzoxazine-based cotton fabric for oil–water separation. Cellulose 25:6691–6704. https://doi.org/10.1007/s10570-018-2024-8

    Article  CAS  Google Scholar 

  14. Lehmler HJ, Liu B, Gadogbe M, Bao W (2018) Exposure to Bisphenol A, Bisphenol F, Bisphenol S in U.S. adults and children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 3:6523–6532. https://doi.org/10.1021/acsomega.8b00824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada H, Tokunaga T, Liu X et al (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-γ. Environ Health Perspect 116:32–38. https://doi.org/10.1289/ehp.10587

    Article  CAS  PubMed  Google Scholar 

  16. Hariharan A, Prabunathan P, Kumaravel A et al (2020) Bio-based polybenzoxazine composites for oil-water separation, sound absorption and corrosion resistance applications. Polym Test 86:106443. https://doi.org/10.1016/j.polymertesting.2020.106443

    Article  CAS  Google Scholar 

  17. Hariharan A, Prabunathan P, Subramanian SS et al (2020) Blends of chalcone benzoxazine and bio-benzoxazines coated cotton fabrics for oil–water separation and bio-silica reinforced nanocomposites for low-k applications. J Polym Environ 28:598–613. https://doi.org/10.1007/s10924-019-01629-2

    Article  CAS  Google Scholar 

  18. Manickam M, Pichaimani P, Arumugam H, Muthukaruppan A (2019) Synthesis of nontoxic pyrazolidine-based benzoxazine-coated cotton fabric for oil-water separation. Ind Eng Chem Res 58:21419–21430. https://doi.org/10.1021/acs.iecr.9b03440

    Article  CAS  Google Scholar 

  19. Liu X, Li Z, Zhan G et al (2019) Bio-based benzoxazines based on sesamol: synthesis and properties. J Appl Polym Sci 136:48255. https://doi.org/10.1002/app.48255

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu X, Zhan G et al (2019) Study on the synergistic anticorrosion property of a fully bio-based polybenzoxazine copolymer resin. Eur Polym J 119:477–486. https://doi.org/10.1016/j.eurpolymj.2019.07.020

    Article  CAS  Google Scholar 

  21. Liu X, Zhang R, Li T et al (2017) Novel fully biobased benzoxazines from rosin: synthesis and properties. ACS Sustain Chem Eng 5:10682–10692. https://doi.org/10.1021/acssuschemeng.7b02650

    Article  CAS  Google Scholar 

  22. Prabunathan P, Vasanthakumar A, Manoj M et al (2020) Polypyrrole inter-layered low temperature curing benzoxazine matrices with enhanced thermal and dielectric properties. J Polym Res 27:1–14. https://doi.org/10.1007/s10965-020-2022-z

    Article  CAS  Google Scholar 

  23. Khalil AA, Rahman UU, Khan MR et al (2017) Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 7:32669–32681. https://doi.org/10.1039/c7ra04803c

    Article  CAS  Google Scholar 

  24. Thirukumaran P, Shakila A, Muthusamy S (2014) Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv 4:7959–7966. https://doi.org/10.1039/c3ra46582a

    Article  CAS  Google Scholar 

  25. Dumas L, Bonnaud L, Olivier M et al (2015) Eugenol-based benzoxazine: from straight synthesis to taming of the network properties. J Mater Chem A 3:6012–6018. https://doi.org/10.1039/c4ta06636g

    Article  CAS  Google Scholar 

  26. Thirukumaran P, Parveen AS, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2:2790–2801. https://doi.org/10.1021/sc500548c

    Article  CAS  Google Scholar 

  27. Krishnan S, Arumugam H, Chavali M, Muthukaruppan A (2019) High dielectric, low curing with high thermally stable renewable eugenol-based polybenzoxazine matrices and nanocomposites. J Appl Polym Sci 136:1–11. https://doi.org/10.1002/app.47050

    Article  CAS  Google Scholar 

  28. Yao H, Lu X, Xin Z et al (2019) A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation. Sep Purif Technol 229:115792. https://doi.org/10.1016/j.seppur.2019.115792

    Article  CAS  Google Scholar 

  29. Thennarasu P, Prabunathan P, Senthilkumar M (2018) Development of biomass-derived functionalized activated carbon-coated and polyaniline-grafted cotton fabric with enhanced ultraviolet resistance. J Ind Text 47:1609–1625. https://doi.org/10.1177/1528083717702008

    Article  CAS  Google Scholar 

  30. Rao BS, Palanisamy A (2011) Monofunctional benzoxazine from cardanol for bio-composite applications. React Funct Polym 71:148–154. https://doi.org/10.1016/j.reactfunctpolym.2010.11.025

    Article  CAS  Google Scholar 

  31. Lu R, Gan W, Wu BH et al (2005) C-H stretching vibrations of methyl, methylene and methine groups at the vapor/Alcohol (n = 1–8) interfaces. J Phys Chem B 109:14118–14129. https://doi.org/10.1021/jp051565q

    Article  CAS  PubMed  Google Scholar 

  32. Rao BS, Palanisamy A (2012) A new thermo set system based on cardanol benzoxazine and hydroxy benzoxazoline with lower cure temperature. Prog Org Coatings 74:427–434. https://doi.org/10.1016/j.porgcoat.2012.01.006

    Article  CAS  Google Scholar 

  33. Parveen AS, Thirukumaran P, Sarojadevi M (2014) Low dielectric materials from fluorinated polybenzoxazines. Polym Adv Technol 25:1538–1545. https://doi.org/10.1002/pat.3398

    Article  CAS  Google Scholar 

  34. Bonnaud L, Chollet B, Dumas L et al (2019) High-performance bio-based benzoxazines from enzymatic synthesis of diphenols. Macromol Chem Phys 220:1800312. https://doi.org/10.1002/macp.201800312

    Article  CAS  Google Scholar 

  35. Gomez IJ, Arnaiz B, Cacioppo M et al (2018) Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B 6:7634–7639. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  36. Lin RC, Kuo SW (2018) Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching. RSC Adv 8:13592–13611. https://doi.org/10.1039/c8ra00506k

    Article  CAS  Google Scholar 

  37. Uyar T, Hacaloglu J, Ishida H (2013) Synthesis, characterization, and thermal properties of alkyl-functional naphthoxazines. J Appl Polym Sci 127:3114–3123. https://doi.org/10.1002/app.37692

    Article  CAS  Google Scholar 

  38. Ishida H (2011) Overview and historical background of polybenzoxazine research. Elsevier B.V, New York

    Book  Google Scholar 

  39. Liu J, Lu X, Xin Z, Zhou C (2016) Surface properties and hydrogen bonds of mono-functional polybenzoxazines with different N-substituents. Chin J Polym Sci (English Ed) 34:919–932. https://doi.org/10.1007/s10118-016-1810-8

    Article  CAS  Google Scholar 

  40. Allen DJ, Ishida H (2009) Effect of phenol substitution on the network structure and properties of linear aliphatic diamine-based benzoxazines. Polymer 50:613–626. https://doi.org/10.1016/j.polymer.2008.11.007

    Article  CAS  Google Scholar 

  41. Rao BS, Surendra P (2016) Synthesis and characterization of difunctional benzoxazines from aromatic diester diamine containing varying length of aliphatic spacer group: polymerization, thermal and viscoelastic characteristics. Eur Polym J 77:139–154. https://doi.org/10.1016/j.eurpolymj.2016.02.003

    Article  CAS  Google Scholar 

  42. Allen DJ, Ishida H (2007) Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer 48:6763–6772. https://doi.org/10.1016/j.polymer.2007.09.003

    Article  CAS  Google Scholar 

  43. Agag T, Akelah A, Rehab A, Mostafa S (2012) Flexible polybenzoxazine thermosets containing pendent aliphatic chains. Polym Int 61:124–128. https://doi.org/10.1002/pi.3156

    Article  CAS  Google Scholar 

  44. Arumugam H, Krishnan S, Chavali M, Muthukaruppan A (2018) Cardanol based benzoxazine blends and bio-silica reinforced composites: thermal and dielectric properties. New J Chem 42:4067–4080. https://doi.org/10.1039/c7nj04506a

    Article  CAS  Google Scholar 

  45. Prabunathan P, Alagar M (2017) Polybenzoxazine-based organic-inorganic nanohybrid materials for high performance engineering applications. In: Ishida H (ed) Advanced and emerging polybenzoxazine science and technology. Elsevier, New York, pp 801–834

    Chapter  Google Scholar 

  46. Prabunathan P, Thennarasu P, Song JK, Alagar M (2017) Achieving low dielectric, surface free energy and UV shielding green nanocomposites: via reinforcing bio-silica aerogel with polybenzoxazine. New J Chem 41:5313–5321. https://doi.org/10.1039/c7nj00138j

    Article  CAS  Google Scholar 

  47. Ge M, Cao C, Liang F et al (2020) A “pDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nanoscale Horizons 5:65–73. https://doi.org/10.1039/c9nh00519f

    Article  CAS  Google Scholar 

  48. Lahiri SK, Zhang P, Zhang C, Liu L (2019) Robust fluorine-free and self-healing superhydrophobic coatings by H3BO3 incorporation with SiO2–Alkyl-Silane@PDMS on cotton fabric. ACS Appl Mater Interfaces 11:10262–10275. https://doi.org/10.1021/acsami.8b20651

    Article  CAS  PubMed  Google Scholar 

  49. Sasaki K, Tenjimbayashi M, Manabe K, Shiratori S (2016) Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl Mater Interfaces 8:651–659. https://doi.org/10.1021/acsami.5b09782

    Article  CAS  PubMed  Google Scholar 

  50. Jeevahan J, Chandrasekaran M, Britto Joseph G et al (2018) Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J Coatings Technol Res 15:231–250

    Article  CAS  Google Scholar 

  51. Jin M, Li S, Wang J et al (2012) Controllable fabrication of organosilane nano-architectured surfaces with tunable wettability. Appl Surf Sci 258:7552–7555. https://doi.org/10.1016/j.apsusc.2012.04.084

    Article  CAS  Google Scholar 

  52. Reshmi CR, Sundaran SP, Juraij A, Athiyanathil S (2017) Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation. RSC Adv 7:2092–2102. https://doi.org/10.1039/c6ra26123j

    Article  CAS  Google Scholar 

  53. Jiang D, Fan P, Gong D et al (2016) High-temperature imprinting and superhydrophobicity of micro/nano surface structures on metals using molds fabricated by ultrafast laser ablation. J Mater Process Technol 236:56–63. https://doi.org/10.1016/j.jmatprotec.2016.05.009

    Article  CAS  Google Scholar 

  54. He M, Wang J, Li H, Song Y (2011) Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7:3993–4000. https://doi.org/10.1039/c0sm01504k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the PSG Management for their financial and moral support. The authors also acknowledge the SIF, VIT-Vellore for providing NMR facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Prabunathan or M. Alagar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 4524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh Kumar, G., Prabunathan, P., Manoj, M. et al. Fluorine Free Bio-Based Polybenzoxazine Coated Substrates for Oil-Water Separation and Anti-Icing Applications. J Polym Environ 28, 2444–2456 (2020). https://doi.org/10.1007/s10924-020-01782-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01782-z

Keywords

Navigation