Skip to main content
Log in

Conversion of Moroccan phosphogypsum waste into nano-calcium fluoride and sodium hydrogen sulfate monohydrate

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The phosphoric acid production in the world generates a large amount of phosphogypsum with the emission of toxic acid fluorine gas into the atmosphere, which forms a significant source of environmental contamination. In this work, a novel and a simple procedure allows converting phosphogypsum waste by using hydrofluoric acid and sodium fluoride into valuable products. The obtained results confirm well the efficiency of this procedure, which permits to synthesize at room temperature, the sodium hydrogen sulfate monohydrate and a relatively pure nano-calcium fluoride from the exact stoichiometric proportions of the phosphogypsum, hydrofluoric acid, and sodium fluoride. The total phosphogypsum conversion is achieved after reaction time equal to 1.5 h. Generally, this procedure offers not only a solution for reducing phosphogypsum waste but also permits to obtain valuable products, which interest several sectors of industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AHF:

Anhydrous hydrofluoric acid

cc:

Concentered acid

da:

Dilute acid

FSA:

Hexafluosilicic acid H2SiF6

HF:

Hydrofluoric acid

P:

Pump

PA:

Phosphoric acid H3PO4

PG:

Phosphogypsum

PR:

Phosphate rock

rpm:

Rotation per minute

S:

Constant stirring

SA:

Sulfuric acid H2SO4

STF:

Silicon tetrafluoride SiF4

t:

Time reaction (h)

T:

Temperature (°C)

TC:

Temperature control

WL:

Weight loss

wt:

Weight

References

  1. Ennaciri Y (2016) Conversion du phosphogypse en produits valorisable par voie de la chimie douce. Thesis, Chouaib Doukkali University

  2. Samrane K, Al-hjouj M, Doudin F, Kossir A (2011) Fluosilicic acid: recovery system and aluminum fluoride production. Arab Fertil Assoc Publ 11:1–20

    Google Scholar 

  3. European Commission (2007) Reference document on best available techniques for the manufacture of large volume inorganic chemicals-ammonia, acids and fertilisers. Off J Eur Union C 202(2):257–282

    Google Scholar 

  4. Lailach G, Bulan A, Buss G (2001) Process for the preparation of sodium fluoride. Patent No US6251358

  5. Sarawade PB, Kim JK, Hilonga A, Kim HT (2010) Recovery of high surface area mesoporous silica from waste hexafluorosilicic acid (H2SiF6) of fertilizer industry. J Hazard Mater 173:576–580. https://doi.org/10.1016/j.jhazmat.2009.08.125

    Article  Google Scholar 

  6. Gouider M, Feki M, Sayadi S (2009) Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6. J Hazard Mater 170(2–3):962–968. https://doi.org/10.1016/j.jhazmat.2009.05.067

    Article  Google Scholar 

  7. Matta S, Stephan K, Stephan J, Lteif R, Goutaudier C, Saab J (2017) Phosphoric acid production by attacking phosphate rock with recycled hexafluosilicic acid. Int J Miner Process 161:21–27. https://doi.org/10.1016/j.minpro.2017.02.008

    Article  Google Scholar 

  8. Górecki HJ (1994) Utilization of fluorine from phosphate fertilizer plants. Hodge CA (1994) Pollution control in fertilizer production. CRC Press, Boca Raton, pp 299–335

    Google Scholar 

  9. El Zrelli R, Rabaoui L, Daghbouj N, Abda H, Castet S, Josse C, Beek P, Souhaut M, Michel S, Bejaoui N, Courjault-Radé P (2019) Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. Environ Sci Pollut Res 25(15):14690–14702. https://doi.org/10.1007/s11356-018-1648-4

    Article  Google Scholar 

  10. Zieliński M (2006) Utilization of phosphogypsum in the aspect of environmental protection. Przem Chem 85(7):478–482

    Google Scholar 

  11. Gonzalez-Nunez R, Alba MD, Vidal M, Rigol A (2015) Viability of adding gypsum and calcite for remediation of metal-contaminated soil: laboratory and pilot plant scales. Int J Environ Sci Technol 12(8):2697–2710. https://doi.org/10.1007/s13762-014-0671-3

    Article  Google Scholar 

  12. Jarosz-Krzemińska E, Helios-Rybicka E, Gawlicki M (2015) Utilization of neutralized spent sulfuric acid pickle liquor from metal treatment in cement production. Int J Environ Sci Technol 12(9):2901–2908. https://doi.org/10.1007/s13762-014-0694-9

    Article  Google Scholar 

  13. Ennaciri Y, Zdah I, Elaloui Belghiti H, Bettach M (2019) Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem Eng Commun. https://doi.org/10.1080/00986445.2019.1599865

    Article  Google Scholar 

  14. Karim AA, Kumar M, Mohapatra S, Singh SK, Panda CR (2019) Co-plasma processing of banana peduncle with phosphogypsum waste for production of lesser toxic potassium–sulfur rich biochar. J Mater Cycles Waste Manag 21(1):107–115. https://doi.org/10.1007/s10163-018-0794-6

    Article  Google Scholar 

  15. Ennaciri Y, Mouahid FE, Bendriss A, Bettach M (2013) Conversion of phosphogypsum to potassium sulfate and calcium carbonate in aqueous solution. MATEC Web Conf EDP Sci 5:04006. https://doi.org/10.1051/matecconf/20130504006

    Article  Google Scholar 

  16. Ennaciri Y, Bettach M, Cherrat A, Zegzouti A (2016) Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution. J Mater Environ Sci 7(6):1925–1933

    Google Scholar 

  17. Bouargane B, Marrouche A, El Issiouy S, Biyoune MG, Mabrouk A, Atbir A, Bachar A, Bellajrou R, Boukbir L, Bakiz B (2019) Recovery of Ca(OH)2, CaCO3 and Na2SO4 from Moroccan phosphogypsum waste. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-019-00910-9

    Article  Google Scholar 

  18. Contreras M, Pérez-López R, Gázquez MJ, Morales-Flórez V, Santos A, Esquivias L, Bolívar JP (2015) Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration. Waste Manag 45:412–419. https://doi.org/10.1016/j.wasman.2015.06.046

    Article  Google Scholar 

  19. Burnett WC, Schultz MK, Hull CD (1996) Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate. J Environ Radioactiv 32(1–2):33–51. https://doi.org/10.1016/0265-931X(95)00078-O

    Article  Google Scholar 

  20. Ennaciri Y, Bettach M, Elaloui Belghiti H (2020) Recovery of nano-calcium fluoride and ammonium bisulphate from phosphogypsum waste. Int J Environ Stud 77(2):297–306. https://doi.org/10.1080/00207233.2020.1737426

    Article  Google Scholar 

  21. Kowalski Z, Paszek A (1999) Production of synthetic fluorspar from waste calcium fluoride slurry. Pol J Environ Stud 8:125–128

    Google Scholar 

  22. Rezvani M, Farahinia L (2015) Structure and optical band gap study of transparent oxyfluoride glass-ceramics containing CaF2 nanocrystals. Mater Des 88:252–257. https://doi.org/10.1016/j.matdes.2015.08.159

    Article  Google Scholar 

  23. Fisch AM (2003) Textile techniques in metal: for jewelers, textile artists & sculptors. Lark Books, New York

    Google Scholar 

  24. Toedt J, Koza D, Van Cleef-Toedt K (2005) Chemical composition of everyday products. Greenwood press, Westport

    Google Scholar 

  25. Johnson TM, Murphy B (2008) Use of sodium bisulfate to reduce ammonia emissions from poultry and livestock housing. In: Proceedings of the mitigating air emissions from animal feeding operations, Des Moines, Iowa, pp 74–78

  26. Ennaciri Y, Bettach M (2018) Procedure to convert phosphogypsum waste into valuable products. Mater Manuf Processes 33(16):1727–1733. https://doi.org/10.1080/10426914.2018.1476763

    Article  Google Scholar 

  27. Almeida RM, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68(8):4225–4232. https://doi.org/10.1063/1.346213

    Article  Google Scholar 

  28. Periasamy A, Muruganand S, Palaniswamy M (2009) Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan J Chem 2(4):981–989

    Google Scholar 

  29. Gopalan R (2009) Inorganic chemistry for undergraduates. Universities Press, Hyderabad

    Google Scholar 

  30. Douahem H, Hammi H, Hamzaoui AH, Mnif A (2016) Modeling and optimization of phosphogypsum transformation into calcium fluoride using experimental design methodology. J Tunis Chem Soc 18:106–113

    Google Scholar 

  31. Lamzougui G, Nafai H, Bouhaouss A, Bchitou R (2016) Determination of the maximum content of heavy metals in the phosphogypsum. J Mater Environ Sci 7(6):2161–2169

    Google Scholar 

  32. Macíasa F, Pérez-López R, Cánovas CR, Carrero S, Cruz-Hernandeza P (2017) Environmental assessment and management of Phosphogypsum according to European and United States of America regulations. Procedia Earth Planetary Sci 17:666–669. https://doi.org/10.1016/j.proeps.2016.12.178

    Article  Google Scholar 

  33. Azouazi M, Ouahidi Y, Fakhi S, Andres Y, Abbe JC, Benmansour M (2001) Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J Environ Radioactiv 54(2):231–242. https://doi.org/10.1016/S0265-931X(00)00153-3

    Article  Google Scholar 

  34. Ennaciri Y, Elaloui Belghiti H, Bettach M (2019) Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum. J Mater Res Technol 8(3):2586–2596. https://doi.org/10.1016/j.jmrt.2019.02.013

    Article  Google Scholar 

  35. Bichel J, Schaaf S (2008) U.S. Patent No. 7,393,378. Washington, DC: U.S. Patent and Trademark Office

  36. Vlasjan SV, Voloshin ND, Shestozub AB (2013) Producing calcium nitrate and rare-earth element concentrates by phosphogypsum conversion. Chem Technol 64(2):58–62. https://doi.org/10.5755/j01.ct.64.2.6024

    Article  Google Scholar 

  37. Gutzow I, Zlateva E, Angelov S, Levy S (1989) Structure and properties of thermoluminescent calcium fluoride glass-ceramic materials. J Mater Sci 24:1281–1286

    Article  Google Scholar 

  38. Dahui W, Hao W, Huaijing C, Yujiao Y, Hongyan L (2016) Chemical evolution of LiCoO2 and NaHSO4·H2O mixtures with different mixing ratios during roasting process. Chem Res Chin Univ 32(4):674–677. https://doi.org/10.1007/s40242-016-5490-2

    Article  Google Scholar 

  39. Zhou L (2018) Preparation of calcium fluoride using phosphogypsum by orthogonal experiment. Open Chem 16(1):864–868. https://doi.org/10.1515/chem-2018-0093

    Article  Google Scholar 

  40. Zinke RK, Werkheiser WH (2018) Mineral commodity summaries 2018: U.S. Geological Survey, 200 p, https://doi.org/10.3133/70194932

  41. Meshri DT (1986) The modern inorganic fluorochemical industry. J Fluor Chem 33(1–4):195–226. https://doi.org/10.1016/S0022-1139(00)85278-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the responsible of the technological platform of the Faculty of Sciences El Jadida, and the center CAC of Cadi Ayyad University Marrakech for different analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Ennaciri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennaciri, Y., Bettach, M. & El Alaoui-Belghiti, H. Conversion of Moroccan phosphogypsum waste into nano-calcium fluoride and sodium hydrogen sulfate monohydrate. J Mater Cycles Waste Manag 22, 2039–2047 (2020). https://doi.org/10.1007/s10163-020-01088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01088-1

Keywords

Navigation