Skip to main content
Log in

Harvesting Electricity from CO2 Emission: Opportunities, Challenges and Future Prospects

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The ever-increasing CO2 emission has necessitated the search for suitable technologies for CO2 utilization at a low cost. Recently, a novel concept called reactive gas electrosorption (RGE) for energy harvesting from CO2 emission, which could boost the efficiency of a thermal power plant by 5% was proposed by Hamelers and coworkers. The concept involves mixing of air stream with a low CO2 concentration with a stream of high CO2 concentration in an alkaline aqueous electrolyte. However, this concept is faced with the challenges of designs specific for CO2-electrolyte, and inadequate performance of the electrode materials. Therefore, this study showcases electricity generation opportunities from CO2 via RGE and discussed challenges and prospect. The study reveals that the drawback relating to the electrode could be solved using heteroatom doped traditional carbon materials and composite carbon-based materials, which has been successfully used in capacitive cells designed for desalination. This modification helps to improve the hydrophilicity, thereby improving electrode wettability, and suppressing faradaic reaction and co-ion repulsion effect. This improvement could enhance the charge efficiency, sorption capacity durability of electrodes and reduce the energy loss in RGE. Moreover, intensification of the membrane capacitive deionization (MCDI) process to obtain variances like enhanced MCDI and Faradaic MCDI. Hybrid capacitive deionization (HCDI) is also a promising approach for improvement of the capacitive cell design in RGE. This intensification can improve the electrosorption capacity and minimize the negative effect of faradaic reaction. The use of alternative amine like Piperazine, which is less susceptible to degradation to boosting CO2 dissolution is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Porada, S., et al. (2014). Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. Journal of Materials Chemistry A, 2, 9313–9321.

    Google Scholar 

  2. Paz-Garcia, J. M., Dykstra, J., Biesheuvel, P., & Hamelers, H. (2015). Energy from CO2 using capacitive electrodes–a model for energy extraction cycles. Journal of Colloid and Interface Science, 442, 103–109.

    Google Scholar 

  3. Hamelers, H., Schaetzle, O., Paz-García, J., Biesheuvel, P., & Buisman, C. (2013). Harvesting energy from CO2 emissions. Environmental Science & Technology Letters, 1, 31–35.

    Google Scholar 

  4. Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488, 313.

    Google Scholar 

  5. Post, J. W., et al. (2007). Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. Journal of membrane science, 288, 218–230.

    Google Scholar 

  6. Pattle, R. (1954). Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 174, 660.

    Google Scholar 

  7. Brogioli, D., et al. (2012). Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference. Energy & Environmental Science, 5, 9870–9880.

    Google Scholar 

  8. Liu, F., et al. (2012). Effect of additional charging and current density on the performance of Capacitive energy extraction based on Donnan Potential. Energy & Environmental Science, 5, 8642–8650.

    Google Scholar 

  9. Rica, R. A., et al. (2013). Electro-diffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences. Electrochimica Acta, 92, 304–314.

    Google Scholar 

  10. Brogioli, D. (2009). Extracting renewable energy from a salinity difference using a capacitor. Physical Review Letters, 103, 058501.

    Google Scholar 

  11. Porada, S., et al. (2012). Water desalination using capacitive deionization with microporous carbon electrodes. ACS Applied Materials & Interfaces, 4, 1194–1199.

    Google Scholar 

  12. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58, 1388–1442.

    Google Scholar 

  13. Zhao, R., Biesheuvel, P., & Van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 5, 9520–9527.

    Google Scholar 

  14. Merlet, C., et al. (2012). On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 11, 306.

    Google Scholar 

  15. Kondrat, S., Perez, C., Presser, V., Gogotsi, Y., & Kornyshev, A. (2012). Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy & Environmental Science, 5, 6474–6479.

    Google Scholar 

  16. Jande, Y., Asif, M., Shim, S., & Kim, W.-S. (2014). Energy minimization in monoethanolamine-based CO2 capture using capacitive deionization. International Journal of Energy Research, 38, 1531–1540.

    Google Scholar 

  17. Paz-Garcia, J. M., Schaetzle, O., Biesheuvel, P., & Hamelers, H. (2014). Energy from CO2 using capacitive electrodes–Theoretical outline and calculation of open circuit voltage. Journal of Colloid and Interface Science, 418, 200–207.

    Google Scholar 

  18. Chi, S., & Rochelle, G. T. (2002). Oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 41, 4178–4186.

    Google Scholar 

  19. Bijmans, M., et al. (2012). Capmix-deploying capacitors for salt gradient power extraction. Energy Procedia, 20, 108–115.

    Google Scholar 

  20. Dykstra, J., Keesman, K., Biesheuvel, P., & Van der Wal, A. (2017). Theory of pH changes in water desalination by capacitive deionization. Water Research, 119, 178–186.

    Google Scholar 

  21. Jiménez, M., Fernandez, M., Ahualli, S., Iglesias, G., & Delgado, A. (2013). Predictions of the maximum energy extracted from salinity exchange inside porous electrodes. Journal of Colloid and Interface Science, 402, 340–349.

    Google Scholar 

  22. García-Quismondo, E., Santos, C., Lado, J., Palma, J. S., & Anderson, M. A. (2013). Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions. Environmental Science & Technology, 47, 11866–11872.

    Google Scholar 

  23. Teng, H., Chang, Y.-J., & Hsieh, C.-T. (2001). Performance of electric double-layer capacitors using carbons prepared from phenol–formaldehyde resins by KOH etching. Carbon, 39, 1981–1987.

    Google Scholar 

  24. Zhang, L. L., Gu, Y., & Zhao, X. (2013). Advanced porous carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 1, 9395–9408.

    Google Scholar 

  25. Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochimica Acta, 55, 3845–3856.

    Google Scholar 

  26. Ma, J., Wang, L., & Yu, F. (2018). Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material. Electrochimica Acta, 263, 40–46.

    Google Scholar 

  27. Zhang, T., Zhao, H., Huang, X., & Wen, G. (2016). Li-ion doped graphene/carbon nanofiber porous architectures for electrochemical capacitive desalination. Desalination, 379, 118–125.

    Google Scholar 

  28. Suss, M., et al. (2015). Water desalination via capacitive deionization: What is it and what can we expect from it? Energy & Environmental Science, 8, 2296–2319.

    Google Scholar 

  29. Xu, X., Sun, Z., Chua, D. H., & Pan, L. (2015). Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific Reports, 5, 11225.

    Google Scholar 

  30. Lee, J., Kim, S., Kim, C., & Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 7, 3683–3689.

    Google Scholar 

  31. Byles, B. W., Cullen, D. A., More, K. L., & Pomerantseva, E. (2018). Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy, 44, 476–488.

    Google Scholar 

  32. 32Legrand, L. (2018) Reactive Gas Electrosorption (RGE): Electricity production/CO2 capture, https://www.wetsus.nl/includes/downloadFile.asp?id=YzkxTmpNeE9BPT1iMGU%3D&date=c91b0e.

  33. Legrand, L., Schaetzle, O., Hamelers, H., de Kler, R. & Buisman, C. Reactive gas electrosorption: novel, clean and energy efficient CO2 capture concept. In 9th Trondheim conference on carbon capture, transport and storage. http://programme.exordo.com/tccs-9/delegates/presentation/53/.

  34. Biesheuvel, P., Porada, S., Levi, M., & Bazant, M. Z. (2014). Attractive forces in microporous carbon electrodes for capacitive deionization. Journal of Solid State Electrochemistry, 18, 1365–1376.

    Google Scholar 

  35. Chandan, P. A., Remias, J. E., Neathery, J. K., & Liu, K. (2013). Morpholine nitrosation to better understand potential solvent based CO2 capture process reactions. Environmental Science & Technology, 47, 5481–5487.

    Google Scholar 

  36. Huang, Q., et al. (2013). Impact of flue gas contaminants on monoethanolamine thermal degradation. Industrial & Engineering Chemistry Research, 53, 553–563.

    Google Scholar 

  37. Saeed, I. M., et al. (2018). Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 79, 212–233. https://doi.org/10.1016/j.ijggc.2018.11.002.

    Article  Google Scholar 

  38. Sexton, A. J., & Rochelle, G. T. (2010). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50, 667–673.

    Google Scholar 

  39. Chandan, P., Richburg, L., Bhatnagar, S., Remias, J. E., & Liu, K. (2014). Impact of fly ash on monoethanolamine degradation during CO2 capture. International Journal of Greenhouse Gas Control, 25, 102–108.

    Google Scholar 

  40. Mangalapally, H. P., & Hasse, H. (2011). Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia, 4, 1–8.

    Google Scholar 

  41. Moser, P., Schmidt, S., & Stahl, K. (2011). Investigation of trace elements in the inlet and outlet streams of a MEA-based post-combustion capture process results from the test programme at the Niederaussem pilot plant. Energy Procedia, 4, 473–479.

    Google Scholar 

  42. Bedell, S. A. (2009). Oxidative degradation mechanisms for amines in flue gas capture. Energy Procedia, 1, 771–778.

    Google Scholar 

  43. Sexton, A. J., & Rochelle, G. T. (2009). Catalysts and inhibitors for oxidative degradation of monoethanolamine. International Journal of Greenhouse Gas Control, 3, 704–711.

    Google Scholar 

  44. Dong, Q., Wang, G., Wu, T., Peng, S., & Qiu, J. (2015). Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. Journal of Colloid and Interface Science, 446, 373–378.

    Google Scholar 

  45. Wang, G., et al. (2012). Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. Journal of Materials Chemistry, 22, 21819–21823.

    Google Scholar 

  46. Li, Y., Jiang, Y., Wang, T.-J., Zhang, C., & Wang, H. (2017). Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode. Separation and Purification Technology, 172, 415–421.

    Google Scholar 

  47. Choi, J.-H. (2010). Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Separation and Purification Technology, 70, 362–366.

    Google Scholar 

  48. Jung, H.-H., Hwang, S.-W., Hyun, S.-H., Lee, K.-H., & Kim, G.-T. (2007). Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination, 216, 377–385.

    Google Scholar 

  49. Nugrahenny, A. T. U., et al. (2014). Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Letters, 15, 38–44.

    Google Scholar 

  50. Xing, Z., et al. (2015). Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, 11, 600–610.

    Google Scholar 

  51. Wang, Y., Han, X., Wang, R., Xu, S., & Wang, J. (2015). Preparation optimization on the coating-type polypyrrole/carbon nanotube composite electrode for capacitive deionization. Electrochimica Acta, 182, 81–88.

    Google Scholar 

  52. Hou, C.-H., Liu, N.-L., Hsu, H.-L., & Den, W. (2014). Development of multi-walled carbon nanotube/poly (vinyl alcohol) composite as electrode for capacitive deionization. Separation and Purification Technology, 130, 7–14.

    Google Scholar 

  53. Tkachev, S., Buslaeva, E. Y., & Gubin, S. (2011). Graphene: A novel carbon nanomaterial. Inorganic Materials, 47, 1–10.

    Google Scholar 

  54. Wang, Z., et al. (2012). Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination, 299, 96–102.

    Google Scholar 

  55. Li, H., et al. (2011). A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 653, 40–44.

    Google Scholar 

  56. Xu, X., et al. (2015). Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization. Journal of Materials Chemistry A, 3, 13418–13425.

    Google Scholar 

  57. Wang, H., et al. (2013). Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 1, 11778–11789.

    Google Scholar 

  58. Oladunni, J., et al. (2018). A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: from theory to practice. Separation and Purification Technology, 207, 291–320.

    Google Scholar 

  59. Min, B. H., Choi, J.-H., & Jung, K. Y. (2018). Improved capacitive deionization of sulfonated carbon/titania hybrid electrode. Electrochimica Acta, 270, 543–551.

    Google Scholar 

  60. Liu, P., et al. (2016). Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 4, 5303–5313.

    Google Scholar 

  61. Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water Research, 128, 314–330.

    Google Scholar 

  62. Lee, J.-H., Bae, W.-S., & Choi, J.-H. (2010). Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258, 159–163.

    Google Scholar 

  63. Maass, S., Finsterwalder, F., Frank, G., Hartmann, R., & Merten, C. (2008). Carbon support oxidation in PEM fuel cell cathodes. Journal of Power Sources, 176, 444–451.

    Google Scholar 

  64. Oh, H.-S., et al. (2008). On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells. Electrochemistry Communications, 10, 1048–1051.

    Google Scholar 

  65. Holubowitch, N., Omosebi, A., Gao, X., Landon, J., & Liu, K. (2017). Quasi-steady-state polarization reveals the interplay of capacitive and faradaic processes in capacitive deionization. ChemElectroChem, 4, 2404–2413.

    Google Scholar 

  66. Haro, M., Rasines, G., Macias, C., & Ania, C. (2011). Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon, 49, 3723–3730.

    Google Scholar 

  67. Cohen, I., Avraham, E., Bouhadana, Y., Soffer, A., & Aurbach, D. (2015). The effect of the flow-regime, reversal of polarization, and oxygen on the long term stability in capacitive de-ionization processes. Electrochimica Acta, 153, 106–114.

    Google Scholar 

  68. Bouhadana, Y., Ben-Tzion, M., Soffer, A., & Aurbach, D. (2011). A control system for operating and investigating reactors: the demonstration of parasitic reactions in the water desalination by capacitive de-ionization. Desalination, 268, 253–261.

    Google Scholar 

  69. Cohen, I., Avraham, E., Bouhadana, Y., Soffer, A., & Aurbach, D. (2013). Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion. Electrochimica Acta, 106, 91–100.

    Google Scholar 

  70. Porada, S., et al. (2013). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 6, 3700–3712.

    Google Scholar 

  71. Duan, F., Du, X., Li, Y., Cao, H., & Zhang, Y. (2015). Desalination stability of capacitive deionization using ordered mesoporous carbon: effect of oxygen-containing surface groups and pore properties. Desalination, 376, 17–24.

    Google Scholar 

  72. Gao, X., Omosebi, A., Landon, J., & Liu, K. (2014). Dependence of the capacitive deionization performance on potential of zero charge shifting of carbon xerogel electrodes during long-term operation. Journal of The Electrochemical Society, 161, E159–E166.

    Google Scholar 

  73. Hemmatifar, A., Palko, J. W., Stadermann, M., & Santiago, J. G. (2016). Energy breakdown in capacitive deionization. Water Research, 104, 303–311.

    Google Scholar 

  74. Qu, Y., et al. (2016). Energy consumption analysis of constant voltage and constant current operations in capacitive deionization. Desalination, 400, 18–24.

    Google Scholar 

  75. Arstad, B., Blom, R., & Swang, O. (2007). CO2 absorption in aqueous solutions of alkanolamines: Mechanistic insight from quantum chemical calculations. The Journal of Physical Chemistry A, 111, 1222–1228.

    Google Scholar 

  76. Yang, L., et al. (2011). Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 50, 7132–7135.

    Google Scholar 

  77. Chen, X., & Rochelle, G. T. (2011). Aqueous piperazine derivatives for CO2 capture: Accurate screening by a wetted wall column. Chemical Engineering Research and Design, 89, 1693–1710.

    Google Scholar 

  78. Léonard, G. (2012). Degradation inhibitors and metal additives: impact on solvent degradation. Laborelec. https://orbi.uliege.be/handle/2268/177360.

  79. Alaba, P. A., Adedigba, S. A., Olupinla, S. F., Agboola, O., & Sanni, S. E. (2020). Unveiling corrosion behavior of pipeline steels in CO2-containing oilfield produced water: towards combating the corrosion curse. Critical Reviews in Solid State and Materials Sciences, 45(3), 239–260.

    Google Scholar 

  80. Blachly, C., & Ravner, H. (1966). Stabilization of monoethanolamine solutions in carbon dioxide scrubbers. Journal of Chemical and Engineering Data, 11, 401–403.

    Google Scholar 

  81. Léonard, G., Voice, A., Toye, D., & Heyen, G. (2014). Influence of dissolved metals and oxidative degradation inhibitors on the oxidative and thermal degradation of monoethanolamine in postcombustion CO2 capture. Industrial & Engineering Chemistry Research, 53(47), 18121–18129.

    Google Scholar 

  82. Lawal, O., Bello, A., & Idem, R. (2005). The role of methyl diethanolamine (MDEA) in preventing the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA)—MDEA blends during CO2 absorption from flue gases. Industrial & Engineering chemistry research, 44, 1874–1896.

    Google Scholar 

  83. Goff, G. S., & Rochelle, G. T. (2006). Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes. Industrial & Engineering Chemistry Research, 45, 2513–2521.

    Google Scholar 

  84. Léonard, G., Voice, A., Toye, D., & Heyen, G. (2014). Influence of dissolved metals and oxidative degradation inhibitors on the oxidative and thermal degradation of monoethanolamine in postcombustion CO2 capture. Industrial & Engineering Chemistry Research, 53, 18121–18129.

    Google Scholar 

  85. Sexton, A. J., & Rochelle, G. T. (2009). Catalysts and inhibitors for MEA oxidation. Energy Procedia, 1, 1179–1185.

    Google Scholar 

  86. Carrette, P. L., & Delfort, B. (2014). U.S. Patent No. 8,765,088. Washington, DC: U.S. Patent and Trademark Office.

  87. Lei, H., et al. (2015). Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. Journal of Materials Chemistry A, 3, 5934–5941.

    Google Scholar 

  88. Yang, J., & Zou, L. (2014). Recycle of calcium waste into mesoporous carbons as sustainable electrode materials for capacitive deionization. Microporous and Mesoporous Materials, 183, 91–98.

    Google Scholar 

  89. Sharma, K., et al. (2015). Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions. Langmuir, 31, 1038–1047.

    Google Scholar 

  90. Qian, B., et al. (2015). Sulfonated graphene as cation-selective coating: A new strategy for high-performance membrane capacitive deionization. Advanced Materials Interfaces, 2, 1500372.

    Google Scholar 

  91. Liu, Y., et al. (2015). Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochimica Acta, 158, 403–409.

    Google Scholar 

  92. Hou, C.-H., Liu, N.-L., & Hsi, H.-C. (2015). Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes. Chemosphere, 141, 71–79.

    Google Scholar 

  93. Porada, S., et al. (2015). Capacitive deionization using biomass-based microporous salt-templated heteroatom-doped carbons. Chemsuschem, 8, 1867–1874.

    Google Scholar 

  94. Li, H., et al. (2015). The study of capacitive deionization behavior of a carbon nanotube electrode from the perspective of charge efficiency. Water Science and Technology, 71, 83–88.

    Google Scholar 

  95. Wang, L., et al. (2011). Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 21, 18295–18299.

    Google Scholar 

  96. Kumar, R., et al. (2016). Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon, 99, 375–383.

    Google Scholar 

  97. Rasines, G., et al. (2015). N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon, 83, 262–274.

    Google Scholar 

  98. Chang, Y., et al. (2017). Polymer dehalogenation-enabled fast fabrication of N, S-codoped carbon materials for superior supercapacitor and deionization applications. ACS Applied Materials & Interfaces, 9, 29753–29759.

    Google Scholar 

  99. Huang, Y., et al. (2019). Mycelial pellet-derived heteroatom-doped carbon nanosheets with a three-dimensional hierarchical porous structure for efficient capacitive deionization. Environmental Science: Nano, 6, 1430–1442.

    Google Scholar 

  100. Wu, T., et al. (2016). Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Water Research, 93, 30–37.

    Google Scholar 

  101. Gao, T., Zhou, F., Ma, W., & Li, H. (2018). Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochimica Acta, 263, 85–93.

    Google Scholar 

  102. Xu, X., Wang, M., Liu, Y., Lu, T., & Pan, L. (2016). Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. Journal of Materials Chemistry A, 4, 5467–5473.

    Google Scholar 

  103. Wu, T., et al. (2018). Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode. Environmental Science & Technology Letters, 5, 98–102.

    Google Scholar 

  104. Yasin, A. S., Obaid, M., Mohamed, I. M., Yousef, A., & Barakat, N. A. (2017). ZrO2 nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance. Rsc Advances, 7, 4616–4626.

    Google Scholar 

  105. Yasin, A. S., Mohamed, I. M., Mousa, H. M., Park, C. H., & Kim, C. S. (2018). Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific Reports, 8, 541.

    Google Scholar 

  106. Iorio, M., De Martino, A., Violante, A., Pigna, M., & Capasso, R. (2010). Synthesis, characterization, and sorption capacity of layered double hydroxides and their complexes with polymerin. Journal of Agricultural and Food Chemistry, 58, 5523–5530.

    Google Scholar 

  107. Poznyak, S., et al. (2009). Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications. ACS Applied Materials & Interfaces, 1, 2353–2362.

    Google Scholar 

  108. Lv, L., He, J., Wei, M., Evans, D., & Duan, X. (2006). Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Research, 40, 735–743.

    Google Scholar 

  109. Lv, L., He, J., Wei, M., Evans, D., & Duan, X. (2006). Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. Journal of Hazardous Materials, 133, 119–128.

    Google Scholar 

  110. Gao, Z., et al. (2011). Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor. Chemistry of Materials, 23, 3509–3516.

    Google Scholar 

  111. Ren, Q., et al. (2018). Calcined MgAl-layered double hydroxide/graphene hybrids for capacitive deionization. Industrial & Engineering Chemistry Research, 57, 6417–6425.

    Google Scholar 

  112. El-Deen, A. G., et al. (2015). TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination, 361, 53–64.

    Google Scholar 

  113. Yin, H., et al. (2013). Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Advanced Materials, 25, 6270–6276.

    Google Scholar 

  114. Liu, R., et al. (2016). Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 18, 4095–4101.

    Google Scholar 

  115. Bayatsarmadi, B., Zheng, Y., Jaroniec, M., & Qiao, S. Z. (2015). Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chemistry–An Asian Journal, 10, 1546–1553.

    Google Scholar 

  116. Yang, W., Yue, X., Liu, X., Zhai, J., & Jia, J. (2015). IL-derived N, S co-doped ordered mesoporous carbon for high-performance oxygen reduction. Nanoscale, 7, 11956–11961.

    Google Scholar 

  117. Hoyt, R. A., Remillard, E. M., Cubuk, E. D., Vecitis, C. D., & Kaxiras, E. (2016). Polyiodide-doped graphene. The Journal of Physical Chemistry C, 121, 609–615.

    Google Scholar 

  118. Alaba, P. A., Lee, C. S., Abnisa, F., Aroua, M. K., Cognet, P., Pérès, Y., et al. (2020). A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation. Reviews in Chemical Engineering. https://doi.org/10.1515/revce-2019-0013.

    Article  Google Scholar 

  119. Alaba, P. A., et al. (2020). Investigating the electrocatalytic oxidation of glycerol on simultaneous nitrogen-and fluorine-doped on activated carbon black composite. Diamond and Related Materials, 101, 107626.

    Google Scholar 

  120. Li, Y., et al. (2017). Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization. ACS Sustainable Chemistry & Engineering, 5, 6635–6644.

    Google Scholar 

  121. Lin, T., et al. (2015). Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 350, 1508–1513.

    Google Scholar 

  122. Deng, X., Zhao, B., Zhu, L., & Shao, Z. (2015). Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 93, 48–58.

    Google Scholar 

  123. Wang, Z., Yan, T., Fang, J., Shi, L., & Zhang, D. (2016). Nitrogen-doped porous carbon derived from a bimetallic metal–organic framework as highly efficient electrodes for flow-through deionization capacitors. Journal of Materials Chemistry A, 4, 10858–10868.

    Google Scholar 

  124. Liu, Y., et al. (2015). Nitrogen-doped electrospun reduced graphene oxide–carbon nanofiber composite for capacitive deionization. Rsc Advances, 5, 34117–34124.

    Google Scholar 

  125. Shi, J., et al. (2014). Nitrogen and sulfur co-doped mesoporous carbon materials as highly efficient electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 145, 259–269.

    Google Scholar 

  126. Ling, Z., et al. (2015). Boric acid-mediated B, N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale, 7, 5120–5125.

    Google Scholar 

  127. Zhang, J., Zhou, J., Wang, D., Hou, L., & Gao, F. (2016). Nitrogen and sulfur codoped porous carbon microsphere: A high performance electrode in supercapacitor. Electrochimica Acta, 191, 933–939.

    Google Scholar 

  128. He, Z., et al. (2018). N, P co-doped carbon microsphere as superior electrocatalyst for VO2+/VO2+ redox reaction. Electrochimica Acta, 259, 122–130.

    Google Scholar 

  129. Ding, M., et al. (2018). Rod-like nitrogen-doped carbon hollow shells for enhanced capacitive deionization. FlatChem, 7, 10–17.

    Google Scholar 

  130. Li, Y., et al. (2016). N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Separation and Purification Technology, 165, 190–198.

    Google Scholar 

  131. Liu, X., et al. (2019). Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Separation and Purification Technology, 224, 44–50.

    Google Scholar 

  132. Min, X., Hu, X., Li, X., Wang, H., & Yang, W. (2019). Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. Journal of Colloid and Interface Science, 550, 147–158.

    Google Scholar 

  133. Zhao, S., et al. (2016). High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization. Applied Surface Science, 369, 460–469.

    Google Scholar 

  134. Yasin, A. S., Jeong, J., Mohamed, I. M., Park, C. H., & Kim, C. S. (2017). Fabrication of N-doped & SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization. Journal of Alloys and Compounds, 729, 764–775.

    Google Scholar 

  135. Li, Y., et al. (2018). Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization. Desalination, 430, 45–55.

    Google Scholar 

  136. Xu, X., et al. (2019). Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chemical Engineering Journal, 362, 887–896.

    Google Scholar 

  137. Xu, D., Tong, Y., Yan, T., Shi, L., & Zhang, D. (2017). N, P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors. ACS Sustainable Chemistry & Engineering, 5, 5810–5819.

    Google Scholar 

  138. Liu, J., Lu, M., Yang, J., Cheng, J., & Cai, W. (2015). Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis. Electrochimica Acta, 151, 312–318.

    Google Scholar 

  139. Zheng, F., Yang, Y., & Chen, Q. (2014). High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications, 5, 5261.

    Google Scholar 

  140. Liu, T., Li, X., Zhang, H., & Chen, J. (2018). Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density. Journal of Energy Chemistry, 27, 1292–1303.

    Google Scholar 

  141. Oh, K., Won, S., & Ju, H. (2015). Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries. Electrochimica Acta, 181, 13–23.

    Google Scholar 

  142. Chang, T.-C., Zhang, J.-P., & Fuh, Y.-K. (2014). Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery. Journal of Power Sources, 245, 66–75.

    Google Scholar 

  143. Park, S.-K., et al. (2014). The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery. Electrochimica Acta, 116, 447–452.

    Google Scholar 

  144. Lado, J. J., Pérez-Roa, R. E., Wouters, J. J., Tejedor-Tejedor, M. I., & Anderson, M. A. (2014). Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes. Separation and Purification Technology, 133, 236–245.

    Google Scholar 

  145. Gao, X., et al. (2016). Complementary surface charge for enhanced capacitive deionization. Water research, 92, 275–282.

    Google Scholar 

  146. 146Biesheuvel, P., Suss, M. & Hamelers, H. (2015). Theory of water desalination by porous electrodes with fixed chemical charge. arXiv preprint arXiv:1506.03948.

  147. Zhao, R., Biesheuvel, P., Miedema, H., Bruning, H., & Van der Wal, A. (2009). Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters, 1, 205–210.

    Google Scholar 

  148. Cohen, I., Avraham, E., Noked, M., Soffer, A., & Aurbach, D. (2011). Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode. The Journal of Physical Chemistry C, 115, 19856–19863.

    Google Scholar 

  149. Wu, T., et al. (2015). Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochimica Acta, 176, 426–433.

    Google Scholar 

  150. Omosebi, A., Gao, X., Rentschler, J., Landon, J., & Liu, K. (2015). Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs. Journal of Colloid and Interface Science, 446, 345–351.

    Google Scholar 

  151. Wouters, J. J., Lado, J. J., Tejedor-Tejedor, M. I., Perez-Roa, R., & Anderson, M. A. (2013). Carbon fiber sheets coated with thin-films of SiO2 and γ-Al2O3 as electrodes in capacitive deionization: Relationship between properties of the oxide films and electrode performance. Electrochimica Acta, 112, 763–773.

    Google Scholar 

  152. Gao, X., Omosebi, A., Landon, J., & Liu, K. (2014). Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge. Electrochemistry Communications, 39, 22–25.

    Google Scholar 

  153. Gao, X., Omosebi, A., Landon, J., & Liu, K. (2015). Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environmental Science & Technology, 49, 10920–10926.

    Google Scholar 

  154. Ma, D., Wang, Y., Han, X., Xu, S., & Wang, J. (2017). Electrode configuration optimization of capacitive deionization cells based on zero charge potential of the electrodes. Separation and Purification Technology, 189, 467–474.

    Google Scholar 

  155. Algharaibeh, Z., & Pickup, P. G. (2011). An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes. Electrochemistry Communications, 13, 147–149.

    Google Scholar 

  156. Gao, H., Xiao, F., Ching, C. B., & Duan, H. (2012). High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Applied Materials & Interfaces, 4, 2801–2810.

    Google Scholar 

  157. Yan, J., et al. (2012). Advanced asymmetric supercapacitors based on Ni (OH)2/graphene and porous graphene electrodes with high energy density. Advanced Functional Materials, 22, 2632–2641.

    Google Scholar 

  158. Gao, X., et al. (2019). Capacitive deionization using symmetric carbon electrode pairs. Environmental Science: Water Research & Technology, 5, 660–671.

    Google Scholar 

  159. He, F., Biesheuvel, P., Bazant, M. Z., & Hatton, T. A. (2018). Theory of water treatment by capacitive deionization with redox active porous electrodes. Water Research, 132, 282–291.

    Google Scholar 

  160. Yu, F., Wang, L., Wang, Y., Shen, X., Cheng, Y., & Ma, J. (2019). Faradaic reactions in capacitive deionization for desalination and ion separation. Journal of Materials Chemistry A, 7(27), 15999–16027.

    Google Scholar 

  161. Achilleos, D. S., & Hatton, T. A. (2016). Selective molecularly mediated pseudocapacitive separation of ionic species in solution. ACS Applied Materials & Interfaces, 8, 32743–32753.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Fundamental Research Grant Scheme (FRGS) from the Ministry of Education (Department of Higher Education), Malaysia for funding this work through Project No. “FP046-2017A”.

Author information

Authors and Affiliations

Authors

Contributions

HUF contributed in the conceptualization and section 3 (Reactive Gas Electrosorption (RGE)) of the manuscript.

Corresponding authors

Correspondence to Peter Adeniyi Alaba, Ching Shya Lee or Wan Mohd Ashri Wan Daud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaba, P.A., Mazari, S.A., Farouk, H.U. et al. Harvesting Electricity from CO2 Emission: Opportunities, Challenges and Future Prospects. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1061–1081 (2021). https://doi.org/10.1007/s40684-020-00250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00250-2

Keywords

Navigation