Skip to main content
Log in

Dynamics Characterization of the Acoustically Driven Single Microbubble near the Rigid and Elastic Wall

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The dynamic behaviors of single acoustic bubble are the key fundamental problem in exploring the mechanism of acoustic cavitation. In this paper, a synchronous high-speed microscopic imaging method is proposed to clearly record the temporary evolution of single bubble in low-frequency ultrasonic field. In the experiment, the temporal evolution of the bubble with two different initial radii in an ultrasonic field are recorded by the high-speed camera at 300 000 frames per second, and other important characteristics of the bubbles are calculated and analyzed. In these experiments, the single bubbles behave similar under the same relative distance from a rigid wall, but the dynamic behaviors of the bubble with different initial radii have obvious difference. In addition, the bubble dynamics of the bubble near an elastic wall are also investigated and compared to the bubble near the rigid wall. It is found that the elasticity would significantly influence the dynamic characteristics during bubble collapse and rebound. In this work, the synchronous high-speed microscopic imaging method demonstrates the abilities to experimentally investigate the rapidly dynamics of single bubble in ultrasonic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Neppiras, R., Phys. Rep., 1980, vol. 61, no. 3, p. 159. https://doi.org/10.1016/0370-1573(80)90115-5

    Article  ADS  MathSciNet  Google Scholar 

  2. Blake, J.R. and Gibson, D., J. Fluid Mech., 1981, vol. 111, p. 123. https://doi.org/10.1017/S0022112081002322

    Article  ADS  Google Scholar 

  3. Yasui, K., Acoustic Cavitation and Bubble Dynamics, Springer, 2018. https://doi.org/10.1007/978-3-319-68237-2.

  4. Yao, Y., Renewable Sustainable Energy Rev., 2016, vol. 58, p. 52. https://doi.org/10.1016/j.rser.2015.12.222

    Article  Google Scholar 

  5. Belay, B.P., Faidi, W.I., Lorraine, P.W., Ali, M.A., Yazdanfar, S., Fan, Y., Nieters, E.J., Mills, D., and Tibbetts, N., US Patent 11/356018, 2007.

  6. Alarcon-Rojo, A.D., Carrillo-Lopez, L.M., Reyes-Villagrana, R., Huerta-Jimenez, M., and Garcia-Galicia, I.A., Ultrason. Sonochem., 2019, vol. 55, p. 369. https://doi.org/10.1016/j.ultsonch.2018.09.016

    Article  Google Scholar 

  7. Leong, T., Juliano, P., and Knoerzer, K., Food Eng. Rev., 2017, vol. 9, no. 3, p. 237. https://xs.scihub.ltd/. https://doi.org/10.1007/s12393-017-9167-5

    Article  Google Scholar 

  8. Cogne, C., Labouret, S., Peczalski, R., Louisnard, O., Baillon, F., and Espitalier, F., Ultrason. Sonochem., 2016, vol. 29, p. 447. https://doi.org/10.1016/j.ultsonch.2015.05.038

    Article  Google Scholar 

  9. Jiang, L., Ge, H., Liu, F.B., and Chen, D.R., Ultrason. Sonochem., 2017, vol. 34, p. 90. https://doi.org/10.1016/j.ultsonch.2016.05.017

    Article  Google Scholar 

  10. Ma, X.J., Huang, B.A., Li, Y.K., Chang, Q., Qiu, S.C., Su, Z., Fu, X.Y., and Wang, G.Y., Ultrason. Sonochem., 2018, vol. 42, p. 619. https://doi.org/10.1016/j.ultsonch.2017.12.021

    Article  Google Scholar 

  11. Ma, X.J., Xing, T.Y., Huang, B., Li, Q.H., and Yang, Y.F., Ultrason. Sonochem., 2018, vol. 40, p. 480. https://doi.org/10.1016/j.ultsonch.2017.07.035

    Article  Google Scholar 

  12. Klapcsik, K. and Hegedus, F., Ultrason. Sonochem., 2019, vol. 54, p. 256. https://doi.org/10.1016/j.ultsonch.2019.01.031

    Article  Google Scholar 

  13. Luo, J., Xu, W., Zhai, Y., and Zhang, Q., Ultrason. Sonochem., 2019, vol. 59, p. 104699. https://doi.org/10.1016/j.ultsonch.2019.104699

    Article  Google Scholar 

  14. Ohl, C.D., Kurz, T., Geisler, R., Lindau, O., and Lauterborn, W., Phys. Eng. Sci., 1999, vol. 357, no. 1751, p. 269. https://doi.org/10.1098/rsta.1999.0327

  15. Laborde, J.L., Bouyer, C., Caltagirone, J.-P., and Gérard, A., Ultrasonics, 1998, vol. 36, p. 589. https://doi.org/10.1016/S0041-624X(97)00105-4

    Article  Google Scholar 

  16. Lauterborn, W., Kurz, T., Geisler, R., Schanz, D., and Lindau, O., Ultrason. Sonochem., 2007, vol. 14, no. 4, p. 484. https://doi.org/10.1016/j.ultsonch.2006.09.017

    Article  Google Scholar 

  17. Ohl, S.W., Klaseboer, E., and Khoo, B.C., Interface Focus, 2015, vol. 5, no. 5, p. 1. https://doi.org/10.1098/rsfs.2015.0019

    Article  Google Scholar 

  18. Versluis, M., Goertz, D.E., Palanchon, P., Heitman, I.L., van der Meer, S.M., Dollet, B., de Jong, N., and Lohse, D., Phys. Rev. E, 2010, vol. 82, no. 2, p. 1. https://doi.org/10.1103/PhysRevE.82.026321

    Article  Google Scholar 

  19. Uemura, Y., Sasaki, K., Minami, K., Sato, T., Choi, P.-K., and Takeuchi, S., Jpn. J. Appl. Phys., 2015, vol. 54, no. 7S1, p. 07HB05. https://doi.org/10.7567/JJAP.54.07HB05

  20. Kim, W., Park, K., Oh, J., Choi, J., and Kim, H.-Y., Ultrasonics, 2010, vol. 50, no. 8, p. 798. https://doi.org/10.1016/j.ultras.2010.04.002

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (nos. 2018YFE0205000, 2017YFA0205103), the National Natural Science Foundation of China (nos. 81571766 and 61428402), the Natural Science Foundation of Tianjin City, China (no. 17JCYBJC24400) and the 111 Project of China (no. B07014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhou, C., Yu, H. et al. Dynamics Characterization of the Acoustically Driven Single Microbubble near the Rigid and Elastic Wall. Instrum Exp Tech 63, 583–590 (2020). https://doi.org/10.1134/S0020441220040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220040120

Navigation