Skip to main content
Log in

Palynology, mineralogy and geochemistry of sediments in Tondè locality, northern part of Douala sub-basin, Cameroon, Central Africa: implication on paleoenvironment

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

A multi-proxy study, including mineralogy, whole rock geochemistry and palynology analyses, was conducted on 79 samples (64 bulk sediment and 10 pyrite samples) from two sites (ES and DA) located in the Tondè area, Douala sub-basin (Cameroon) to unravel the paleoenvironmental and paleoclimatic conditions prevailing in recent continental deposits. Lithologies of this locality mainly consist of pyriteous claystones (grey and red) and unconsolided sandstones. Encountered pyrite is euhedral (isolated and clusters crystals) and massive with diverse morphologies and sizes. In both sections, major and trace elements show that the clayey materials result from weathering of an intermediate source rock, probably from the surrounding basement (gneiss and micaschist), whereas the sandy materials appear to be recycled. Palynological data consists of a few index species such as Malvaceae and graminaceae which indicate Pleistocene-Holocene age deposits of continental origin (swampy bays of seaside and hinterland). This area was subjected to intense chemical alteration (high CIA values: 97.35–99.43%) as testified by the mineralogical phases, mainly consist of kaolinite, quartz and goethite. Mean annual precipitation (MAP = 221.1e0.0197(CIA-K); ±181 mm.y−1) and mean annual temperature (MAT = 46.9C + 4; ±0.6 °C) are 1575 ±181 mm.y−1 and 25.2 ± 0.6 °C for ES site and then 1566 ± 181 mm.y−1 and 20.3 ± 0.6 °C for DA, thus reflecting a subequatorial to equatorial climate. The pyrite geochemistry is characterized by a weak Al vs. ΣREE positive correlation (r2 = 0.02), a positive Eu anomaly relative to PAAS and a significant negative correlation between ΣREE and the Eu anomaly (r2 = −0.83). These results indicate that pyrite is a late diagenesis product formed by a secondary enrichment and coupled with precipitation under more reducing conditions, linked to the water table fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullayev, E. and Leroy, S., 2016, Provenance of clay minerals in the sediments from the Pliocene Productive Series, western South Caspian Basin. Marine and Petroleum Geology, 73, 517–527.

    Article  Google Scholar 

  • Acharya, S., Panigrahi, M., Gupta, A., and Tripathy, S., 2015, Response of trace metal redox proxies in continental shelf environment: the eastern Arabian Sea scenario. Continental Shelf Research, 106, 70–84.

    Article  Google Scholar 

  • Adatte, T., Stinnesbeck, W., and Keller, G., 1996, Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: implications for origin and nature of deposition. In: Ryder, G., Fastovsky, D.E., and Gartner, S. (eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. GSA Special Papers, Geological Society of America, Boulder, 307, p. 211–226. https://doi.org/10.1130/0-8137-2307-8.211

    Google Scholar 

  • Adatte, T., Keller, G., and Stinnesbeck, W., 2002, Late Cretaceous to early Paleocene climate and sea-level fluctuations: The Tunisian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 178, 165–196.

    Article  Google Scholar 

  • Anaya-Gregorio, A., Armstrong-Altrin, J., Machain-Castillo, M., Montiel-García, P., and Ramos-Vázquez, M., 2018, Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Palaeogeography, 7, 1–19.

    Article  Google Scholar 

  • Armstrong-Altrin, J., Lee, Y., Verma, S., and Ramasamy, S., 2004, Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297.

    Article  Google Scholar 

  • Armstrong-Altrin, J., Machain-Castillo, M., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J., and Ruíz-Fernández, A., 2015, Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.

    Article  Google Scholar 

  • Armstrong-Altrin, J., Ramos-Vázquez, M., Zavala-León, A., and Montiel-García, P., 2018, Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal, 53, 2824–2848.

    Article  Google Scholar 

  • Armstrong-Altrin, J., Botello, A., Villanueva, S., and Soto, L., 2019, Geochemistry of surface sediments from the northwestern Gulf of Mexico: implications for provenance and heavy metal contamination. Geological Quarterly, 63, 522–538.

    Article  Google Scholar 

  • Barreda, V., Guler, V., and Palazzesi, L., 2008, Late Miocene continental and carine palynological assemblages from Patagonia. Developments in Quaternary Sciences, 11, 343–350.

    Article  Google Scholar 

  • Berner, R., 1984, Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605–615.

    Article  Google Scholar 

  • Bertolino, S., Zimmermann, U., and Sattler, F., 2007, Mineralogy and geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: environmental and health constraints. Applied Clay Science, 36, 206–220.

    Article  Google Scholar 

  • Botsou, F., Godelitsas, A., Kaberi, H., Mertzimekis, T., Goettlicher, J., Steininger, R., and Scoullos, M., 2015, Distribution and partitioning of major and trace elements in pyrite-bearing sediments of a Mediterranean coastal lagoon. Geochemistry, 75, 219–236.

    Article  Google Scholar 

  • Braun, J., Pagel, M., Herbilln, A., and Rosin, C., 1993, Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochimica et Cosmochimica Acta, 57, 4419–4434.

    Article  Google Scholar 

  • Budakoglu, M., Abdelnasser, A., Karaman, M., and Kumral, M., 2015, The rare earth element geochemistry on surface sediments, shallow cores and lithological units of Lake Acıgöl basin, Denizli, Turkey. Journal of Asian Earth Sciences, 111, 632–662.

    Article  Google Scholar 

  • Bukalo, N., Ekosse, G., Odiyo, J., and Ogola, J., 2019, Paleoclimatic implications of hydrogen and oxygen isotopic compositions of Cretaceous-Tertiary kaolins in the Douala Sub-Basin, Cameroon. Comptes Rendus Geoscience, 351, 17–26.

    Article  Google Scholar 

  • Chamley, H., 1989, Clay Sedimentology. Springer, Berlin, 623 p.

    Book  Google Scholar 

  • Chamley, H., 1997, Clay mineral sedimentation in the Ocean. In: Paquet, H. and Clauer, N. (eds.), Soils and Sediments: Mineralogy and Geochemistry. Springer, Berlin, p. 269–302. https://doi.org/10.1007/978-3-642-60525-3_13

    Chapter  Google Scholar 

  • Chiffoleau, J.-F., 1994, Le chrome en milieu marin. Repères Océan N° 8, Rapports Scientifiques et Techniques de l’IFREMER, Plouzané, 43 p. https://archimer.ifremer.fr/doc/00000/1430/

  • Condie, K. and Wronkiewicz, D., 1990, The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters, 97, 256–267.

    Article  Google Scholar 

  • Condie, K., Dengate, J., and Cullers, R., 1995, Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59, 279–294.

    Article  Google Scholar 

  • Cox, R., Lowe, D., and Cullers, R., 1995, The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919–2940.

    Article  Google Scholar 

  • Cullers, R., 1988, Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. Lithos, 21, 301–314. https://doi.org/10.1016/0024-4937(88)90035-7

    Article  Google Scholar 

  • Cullers, R., 1994, The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 4955–4972.

    Article  Google Scholar 

  • Cullers, R., 2000, The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181–203.

    Article  Google Scholar 

  • Cullers, R., Chaudhuri, S., Kilbane, N., and Koch, R., 1979, Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochimica et Cosmochimica Acta, 43, 1285–1301.

    Article  Google Scholar 

  • Curtis, C., 1990, Aspects of climatic influence on the clay mineralogy and geochemistry of soils, palaeosols and clastic sedimentary rocks. Journal of the Geological Society, 147, 351–357.

    Article  Google Scholar 

  • Dabard, M. and Loi, A., 2012, Environmental control on concretion-forming processes: examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician). Sedimentary Geology, 267–268, 93–103.

    Article  Google Scholar 

  • Ding, H., Yao, S., and Chen, J., 2014, Authigenic pyrite formation and reoxidation as an indicator of an unsteady-state redox sedimentary environment: evidence from the intertidal mangrove sediments of Hainan Island, China. Continental Shelf Research, 78, 85–99.

    Article  Google Scholar 

  • Fagel, N., 2007, Clay minerals, deep circulation and climate. In: Hillaire-Marcel, C. and De Vernal, A. (eds.), Proxies in Late Cenozoic Paleoceanography (1st edition). Developments in Marine Geology, 1, p. 139–184. https://doi.org/10.1016/S1572-5480(07)01009-3

  • Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V, and Najman, Y., 2010, Mineralogical and chemical variability of fluvial sediments1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299, 368–381.

    Article  Google Scholar 

  • Giresse, P., Megope-Foonde, J.P., Ngueutchoua, G., Aloisi, J.C., Kuete, M., and Monteillet, J., 1996, Carte sédimentologique du plateau continental du Cameroun à 1: 200000 (Notice Explicative 111). Institut Français de Recherche Scientifique pour le Développement en Coopération, ORSTOM, Paris, 41 p. http://www.documentation.ird.fr/hor/fdi:010007562

    Google Scholar 

  • Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D., and Al-Riyami, R.K., 1996, Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107–118. https://doi.org/10.1306/D42682CA-2B26-11D7-8648000102C1865D

    Google Scholar 

  • Hamer, J., Sheldon, N., Nichols, G., and Collinson, M., 2007, Late Oligocene-Early Miocene paleosols of distal fluvial systems, Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 220–235.

    Article  Google Scholar 

  • Hatch, J. and Leventhal, J., 1992, Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.

    Article  Google Scholar 

  • Hayashi, K., Fujisawa, H., Holland, H., and Ohmoto, H., 1997, Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.

    Article  Google Scholar 

  • Hernández-Hinojosa, V., Montiel-García, P., Armstrong-Altrin, J., Nagarajan, R., and Kasper-Zubillaga, J., 2017, Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, 13, 161–174.

    Article  Google Scholar 

  • Hillier, S., 1995, Erosion, sedimentation and sedimentary origin of clays. In: Velde, B. (ed.), Origin and Mineralogy of Clays: Clays and the Environment. Springer, Berlin, p. 162–219. https://doi.org/10.1007/978-3-662-12648-6_4

    Chapter  Google Scholar 

  • Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., and Master, S., 2009, Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: a new tool for provenance analysis. Earth and Planetary Science Letters, 286, 436–445.

    Article  Google Scholar 

  • Jones, B. and Manning, D., 1994, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Article  Google Scholar 

  • Kenfack, P.L., Njike Ngaha, P.R., Ekodeck, G.E., and Ngueutchoua, G., 2012, Fossils dinoflagellates from the northern border of the Douala sedimentary sub-Basin (South-West Cameroon): age assessment and paleoecological interpretations. Geosciences, 2, 117–124. DOI: https://doi.org/10.5923/j.geo.20120205.03

    Google Scholar 

  • Khozyem, H., Adatte, T., Spangenberg, J.E., Tantawy, A.A., and Keller, G., 2013, Palaeoenvironmental and climatic changes during the Paleocene-Eocene Thermal Maximum (PETM) at Wadi Nukhul Section, Sinai, Egypt. Journal of the Geological Society, 170, 341–352. https://doi.org/10.1144/jgs2012-046

    Article  Google Scholar 

  • Klug, H.P. and Alexander, L., 1974, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (1st and 2nd editions). John Wiley and Sons, New York, 992 p.

    Google Scholar 

  • Kortenski, J. and Kostova, I., 1996, Occurrence and morphology of pyrite in Bulgarian coals. International Journal of Coal Geology, 29, 273–290.

    Article  Google Scholar 

  • Kübler, B., 1987, Cristallinit de l’illite, méthodes normalisées de préparations, méthodes normalisées de mesures. Neuchâtel, Suisse, Cahiers Institut de Géologie, Série ADX, Vol. 1, 13 p.

  • Kutterolf, S., Diener, R., Schacht, U., and Krawinkel, H., 2008, Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria/Slovenia) — Geochemistry versus petrography. Sedimentary Geology, 203, 246–266.

    Article  Google Scholar 

  • Large, R., Halpin, J., Danyushevsky, L., Maslennikov, V., Bull, S., Long, J., Gregory, D., Lounejeva, E., Lyons, T., Sack, P., McGoldrick, P., and Calver, C., 2014, Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220.

    Article  Google Scholar 

  • Lawrence, S., Munday, S., and Bray, R., 2002, Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). The Leading Edge, 21, 1112–1117.

    Article  Google Scholar 

  • Lim, D., Jung, H., and Choi, J., 2014, REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance. Marine Geology, 357, 12–24.

    Article  Google Scholar 

  • MacRae, N., Nesbitt, H., and Kronberg, B, 1992, Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109, 585–591.

    Article  Google Scholar 

  • Madhavaraju, J. and Lee, Y.I., 2009, Geochemistry of the Dalmiapuram Formation of the Uttatur Group (early Cretaceous), Cauvery basin, southeastern India: implications on provenance and paleo-redox conditions. Revista Mexicana de Ciencias Geológicas, 26, 380–394.

    Google Scholar 

  • Madhavaraju, J., Tom, M., Lee, Y., Balaram, V., Ramasamy, S., Carranza-Edwards, A., and Ramachandran, A., 2016, Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, México. Journal of South American Earth Sciences, 71, 262–275.

    Article  Google Scholar 

  • Marbut, C.F., 1935, Soils of the United States. In: Baker, O.E. (ed.), Atlas of American Agriculture, Part III. US Bureau of Agricultural Economics, US Department of Agriculture, US Bureau of Chemistry and Soils, U.S. Government Publishing Office, Washington DC., 8, 98 p.

    Google Scholar 

  • Mbesse, C.O., Roche, E., and Ngos III, S., 2012, The Paleocene-Eocene boundary in the Douala Basin (Cameroon). Dinocysts biostratigraphy and tentative of paleoenvironmental reconstruction. International Journal of Tropical Geology, Geography and Ecology, 36, 83–119. http://www.geoecotrop.be/index.php?page=numero-36

    Google Scholar 

  • McLennan, S., 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2. https://doi.org/10.1029/2000GC000109

  • McLennan, S., Taylor, S., and Eriksson, K., 1983, Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47, 1211–1222.

    Article  Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments. GSA Special Papers, Geological Society of America, Boulder, 284, p. 21–40. https://doi.org/10.1130/SPE284-p21

    Chapter  Google Scholar 

  • Middelburg, J., van der Weijden, C., and Woittiez, J., 1988, Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68, 253–273.

    Article  Google Scholar 

  • Murray, R., Buchholtz Ten Brink, M., Gerlach, D., Russ, G., and Jones, D., 1991, Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55, 1875–1895.

    Article  Google Scholar 

  • Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J.S., and Moutte, J., 2007, Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas, 24, 150–160.

    Google Scholar 

  • Nagarajan, R., Armstrong-Altrin, J., Kessler, F., Hidalgo-Moral, E., Dodge-Wan, D., and Taib, N., 2015, Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti formation, northwestern Borneo. Arabian Journal of Geosciences, 8, 8549–8565.

    Article  Google Scholar 

  • Ndome Effoudou-Priso, E., Onana, V., Boubakar, L., Beyala, V., and Ekodeck, G., 2014, Relationships between major and trace elements during weathering processes in a sedimentary context: implications for the nature of source rocks in Douala, Littoral Cameroon. Chemie der Erde, 74, 765–781.

    Article  Google Scholar 

  • Nesbitt, H.W. and Markovics, G., 1997, Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61, 1653–1670.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochemica et Cosmochemica Acta, 48, 1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1989, Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  Google Scholar 

  • Ngon Ngon, G., Etame, J., Ntamak-Nida, M., Mbesse, C., Mbai, J., Bayiga, É., and Gerard, M., 2016, Geochemical and palaeoenvironmental characteristics of Missole I iron duricrusts of the Douala sub-basin (Western Cameroon). Comptes Rendus Geoscience, 348, 127–137.

    Article  Google Scholar 

  • Ngon Ngon, G.-F., Mbabi Bitchong, A., Mbaï, J.S., Ngos III, S., Yongue Fouateu, R., and Bilong, P., 2019, Geochemistry of pyriteous mud-rocks of the cenozoic N’Kapa formation in Douala Sub-basin, western Cameroon (Central Africa): source rock weathering, provenance, paleo-redox conditions and tectonic settings. Journal of African Earth Sciences, 156, 44–57.

    Article  Google Scholar 

  • Ngon Ngon, G., Mbog, M., Etame, J., Ntamak-Nida, M., Logmo, E., Gerard, M., Yongue-Fouateu, R., and Bilong, P., 2014, Geochemistry of the Paleocene-Eocene and Miocene-Pliocene clayey materials of the eastern part of the Wouri River (Douala sub-basin, Cameroon): influence of parent rocks. Journal of African Earth Sciences, 91, 110–124.

    Article  Google Scholar 

  • Nguene, F.-R., Tamfu, S., Loule, J.-P., and Ngassa, C., 1992, Palaeoenvironments of the Douala and Kribi/Campo subbasins, in Cameroon, West Africa. In: Curnelle, R. (ed.), Géologie Africaine, Bulletin du Centre de Recherche Exploration Production Elf-Aquitaine, Memoire, 13, p. 129–139.

  • Njike Ngaha, P.R., 1984, Contribution l’étude géologique, stratigraphique et structurale de la bordure Atlantique du Cameroun. Thèse 3ème cycle, Universit de Yaound, Yaound, 131 p.

    Google Scholar 

  • Njike Ngaha, P.R., 2005, Palynostratigraphie et reconstitution des paléoenvironnements du Crétacé de l’Est du bassin sédimentaire de Douala (Cameroun). Thèse d’Etat, Université de Yaoundé I, Yaoundé, 259 p.

    Google Scholar 

  • Pattan, J.N., Masuzawa, T., and Yamamoto M., 2005, Variations in terrigenous sediment discharge in a sediment core from southeastern Arabian Sea during the last 140 ka. Current Science, 89, 1421–1425.

    Google Scholar 

  • Piper, D. and Bau, M., 2013, Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 4, 69–83.

    Article  Google Scholar 

  • Potter, P E., Maynard, J.B., and Pryor, W.A., 1980, Sedimentology of Shale: Study Guide and Reference Source. Springer, New York, 310 p.

    Book  Google Scholar 

  • Price, J.R. and Velbel, M.A., 2003, Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397–416.

    Article  Google Scholar 

  • Quantin, P., 1965, Les sols de la République Centrafricaine, Paris. ORSTOM, Memoires, 16, 113 p. http://www.documentation.ird.fr/hor/fdi:10964

    Google Scholar 

  • Querol, X., Chinchon, S., and Lopez-Soler, A., 1989, Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. International Journal of Coal Geology, 11, 171–189.

    Article  Google Scholar 

  • Ramos-Vázquez, M. and Armstrong-Altrin, J., 2019, Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110, 650–675.

    Article  Google Scholar 

  • Ramos-Vázquez, M., Armstrong-Altrin, J., Machain-Castillo, M., and Gío-Argáez, F., 2018, Foraminiferal assemblages, 14C ages, and compositional variations in two sediment cores in the western Gulf of Mexico. Journal of South American Earth Sciences, 88, 480–496.

    Article  Google Scholar 

  • Regnoult, J.M., 1986, Synthèse géologique du Cameroun. Ministère des Mines et de l’Energie, Yaound, Cameroun, 119 p.

    Google Scholar 

  • Righi, D. and Meunier, A., 1995, Origin of clays by rock weathering and soil formation. In: Velde, B. (ed.), Origin and Mineralogy of Clays: Clays and the Environment. Springer, Berlin, p 43–161. https://doi.org/10.1007/978-3-662-12648-6_3

    Chapter  Google Scholar 

  • Salard-Cheboldaeff, M., 1977, Palynologie du bassin sédimentaire littoral du Cameroun dans ses rapports avec la stratigraphie et la paleoécologie. Thèse de Doctorat d’Etat ès sciences naturelles, Université Pierre et Marie Curie, Paris, 262 p.

    Google Scholar 

  • Salard-Chebodaeff, M., 1980, Palynologie camerounaise. I. Pollens de la Mangrove et des fourrés arbustifs côtiers. Compte Rendus Congres National des Sociétés Savantes, 106, p. 125–136.

    Google Scholar 

  • Salard-Cheboldaeff, M., 1990, Intertropical African palynostratigraphy from Cretaceous to late quaternary times. Journal of African Earth Sciences (and the Middle East), 11, 1–24.

    Article  Google Scholar 

  • Schaller, T., Moor, H., and Wehrli, B., 1997, Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquatic Sciences, 59, 345–361.

    Article  Google Scholar 

  • Sheldon, N., 2006, Quaternary glacial-interglacial climate cycles in Hawaii. The Journal of Geology, 114, 367–376.

    Article  Google Scholar 

  • Sheldon, N. and Retallack, G., 2004, Regional Paleoprecipitation Records from the Late Eocene and Oligocene of North America. The Journal of Geology, 112, 487–494.

    Article  Google Scholar 

  • Sheldon, N., Retallack, G., and Tanaka, S., 2002, Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. The Journal of Geology, 110, 687–696.

    Article  Google Scholar 

  • Sheldon, N. and Tabor, N., 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–52.

    Article  Google Scholar 

  • Singer, A., 1980, The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15, 303–326.

    Article  Google Scholar 

  • Singh, P., 2009, Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255.

    Article  Google Scholar 

  • Singh, P. and Rajamani, V., 2001, REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: implication to source area weathering and sedimentary processes. Geochimica et Cosmochimica Acta, 65, 3093–3108.

    Article  Google Scholar 

  • SNH/UD, 2005, Stratigraphie séquentielle et tectonique des dépôts mesozoic syn-rifts du Bassin de Kribi/Campo. In: Ntamak-Nida, M.J., Mpesse, J.E., Ketchemen-Tandia, B., Ndong Ondo, S., Courville, P., and Baudin, F. (eds.), Rapport Interne, 11 planches, 2 rapports annexes d’analyses, Unpublished report, 134 p.

  • Tapia-Fernandez, H., Armstrong-Altrin, J., and Selvaraj, K., 2017, Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 76, 346–361.

    Article  Google Scholar 

  • Tawfik, H., Salah, M., Maejima, W., Armstrong-Altrin, J., Abdel-Hameed, A., and El Ghandour, M., 2017, Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt. Geological Journal, 53, 1938–1953.

    Article  Google Scholar 

  • Taylor, K.G. and Macquaker, J.H.S., 2000, Spatial and temporal distribution of authigenic minerals in continental shelf sediments: implications for sequence stratigraphic analysis. In: Glenn, C., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: Microbial to Global. SEPM Special Publication, SEPM Society for Sedimentary Geology, 66, p. 309–323. https://doi.org/10.2110/pec.00.66.0309

  • Taylor, S.R. and MacLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p.

    Google Scholar 

  • Thiry, M., 2000, Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49, 201–221.

    Article  Google Scholar 

  • Tribovillard, N., Algeo, T., Lyons, T., and Riboulleau, A., 2006, Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232, 12–32.

    Article  Google Scholar 

  • Van der Weijden, C., 2002, Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology, 184, 167–187.

    Article  Google Scholar 

  • Wang, L., Shi, X., and Jiang, G., 2012, Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334, 218–227.

    Article  Google Scholar 

  • Wedepohl, K.H., 1971, Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 8, 307–333.

    Article  Google Scholar 

  • Wedepohl, K.H., 1991, Chemical-composition and fractionation of the continental-crust. Geologische Rundschau, 80, 207–223.

    Article  Google Scholar 

  • Widodo, S., Oschmann, W., Bechtel, A., Sachsenhofer, R., Anggayana, K., and Puettmann, W., 2010, Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): implications for paleoenvironmental conditions. International Journal of Coal Geology, 81, 151–162.

    Article  Google Scholar 

  • Wignall, P. and Myers, K., 1988, Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16, p.452–455.

    Article  Google Scholar 

  • Wronkiewicz D. and Condie, K., 1987, Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Wronkiewicz, D. and Kent C., 1989, Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53, 1537–1549.

    Article  Google Scholar 

  • Zhao, Z., Dai, L., and Zheng, Y., 2015, Two types of the crust-mantle interaction in continental subduction zones. Science China Earth Sciences, 58, 1269–1283.

    Article  Google Scholar 

  • Zhou, C. and Jiang, S., 2009, Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 279–286.

    Article  Google Scholar 

Download references

Acknowledgments

The financial assistance received by first author in the form of Swiss Government Excellence Scholarship to conduct research at the University of Lausanne under grant N° 2015.0646 of the Federal Commission for Scholarships for Foreign Students (FCS), is acknowledged. The authors are grateful for help of National Civil Engineering Laboratory (LABOGENIE) for the drill core sampling help in the field. We warmly thank Dr. Jean-Pierre Suc (ISTeP) for help in determination of some pollen species. We acknowledge the different laboratory staffs, specially Jean-Claude Lavanchy and Tiffany Monnier in ISTE of the University of Lausanne as well as ALS staff, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Mbabi Bitchong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbabi Bitchong, A., Adatte, T., Ngon Ngon, GF. et al. Palynology, mineralogy and geochemistry of sediments in Tondè locality, northern part of Douala sub-basin, Cameroon, Central Africa: implication on paleoenvironment. Geosci J 25, 299–319 (2021). https://doi.org/10.1007/s12303-020-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-020-0021-z

Key words

Navigation