Skip to main content
Log in

The Effects of Water-Soluble Soil Components on the Size and Electrokinetic Potential of Nanodiamonds

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

An increasing rate of the use of nanoparticles necessitates regarding them as a new class of toxicants. Nanodiamonds hold a special position because of their use in consumer goods, such as fuels and lubricants, which increases the risk of soil pollution with these nanoparticles. The goal of this study was to assess the effects of water-soluble soil components on the electrokinetic potential (ζ-potential) and size of detonation nanodiamonds. Water extracts from 15 zonal soil samples were studied. Addition of nanodiamonds to soil water extracts caused an increase in the weighted average hydrodynamic diameter of nanodiamonds from 24 to 69–683 nm and a drop in absolute ζ-potential from –22 to –(11.2–19.50) mV; an increase in the absolute ζ-potential to –34.5 mV was observed in one case. The highest increase in the size of nanodiamonds was detected in the extracts with high pH values and high Ca/(Fe + Al) ratio. The observed inverse correlation of the ζ-potential of nanodiamonds with the extinction coefficient of the dissolved soil organic matter \({\text{E}}_{{465}}^{{{\text{OC}},0.01\% }}\) and the iron content in water extracts suggested that the stability of nanodiamonds could increase in soil solutions in the presence of low molecular weight components of dissolved soil organic matter and at high iron concentrations. Generally, the obtained results allow us to assume that coagulation of nanodiamonds and a decrease in their mobility in soil are due to their interaction with water-soluble soil components. Water extracts from solonetzes are an exception, because the mobility of nanodiamonds in them may increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Yu. Dolmatov, Ultrafine Diamonds of Detonation Synthesis: Production, Properties, and Use (St. Petersburg Polytechnic University, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  2. S. I. Kolesnikov, A. N. Timoshenko, K. Sh. Kazeev, Yu. V. Akimenko, and M. A. Myasnikova, “Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems,” Eurasian Soil Sci. 52, 982–987 (2019).

    Article  Google Scholar 

  3. “Before the jump,” V Mire Nano, No. 5, 25–28 (2010).

  4. V. A. Terekhova and M. M. Gladkova, “Engineered nanomaterials in soil: problems in assessing their effect on living organisms,” Eurasian Soil Sci. 46, 1203–1210 (2013).

    Article  Google Scholar 

  5. O. I. Filippova, V. A. Kholodov, N. A. Safronova, A. V. Yudina, and N. A. Kulikova, “Particle-size, microaggregate-size, and aggregate-size distributions in humus horizons of the zonal sequence of soils in European Russia,” Eurasian Soil Sci. 52, 300–312 (2019). https://doi.org/10.1134/S1064229319030037

    Article  Google Scholar 

  6. V. A. Basiuk, T. Terrazas, N. Luna-Martínez, and E. V. Basiuk, “Phytotoxicity of carbon nanotubes and nanodiamond in long-term assays with Cactaceae plant seedlings,” Fullerenes, Nanotubes Carbon Nanostruct. 27 (2), 141–149 (2019). https://doi.org/10.1080/1536383X.2018.1531393

    Article  Google Scholar 

  7. Zh. Bo, S. Y. Avzar, M. K. Corliss, M. Chung, and N.‑J. Cho, “Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers,” J. Hazard. Mater. 339, 264–273 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.031

    Article  Google Scholar 

  8. T. Borodina, D. Trushina, V. Artemov, T. Bukreeva, and D. Shchukin, “Modification of the polyelectrolyte capsule shell by nanodiamonds for remote microwave opening,” Mater. Lett. 251, 81–84 (2019). https://doi.org/10.1016/j.matlet.2019.05.037

    Article  Google Scholar 

  9. Y. Cai, S. X. Chang, B. Ma, and E. W. Bork, “Watering increased DOC concentration but decreased N2O emission from a mixed grassland soil under different defoliation regimes,” Biol. Fert. Soils 52, 987–996 (2016). https://doi.org/10.1007/s00374-016-1135-3

    Article  Google Scholar 

  10. L. Degenkolb, M. Kaupenjohann, and S. Klitzke, “The variable fate of Ag and TiO2 nanoparticles in natural soil solutions—sorption of organic matter and nanoparticle stability,” Water, Air Soil Pollut. 230, 62 (2019). https://doi.org/10.1007/s11270-019-4123-z

    Article  Google Scholar 

  11. S.-J. Gao, C. Zhao, Z.-H. Shi, J. Zhong, J.-G. Liu, and J.-Q. Li, “Spectroscopic characteristics of dissolved organic matter in afforestation forest soil of Miyun district, Beijing,” J. Anal. Methods Chem. 2016, 1480857 (2016). https://doi.org/10.1155/2016/1480857

    Article  Google Scholar 

  12. Y. Gao, T. T. Yang, and J. Jin, “Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China,” Environ. Sci. Pollut. Res. 22 (23), 19297–19306 (2015). https://doi.org/10.1007/s11356-015-5497-0

    Article  Google Scholar 

  13. A. M. Hansen, T. E. C. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing, and B. A. Bergamaschi, “Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation,” Limnol. Oceanogr. 61 (3), 1015–1032 (2016). https://doi.org/10.1002/lno.10270

    Article  Google Scholar 

  14. M. Ivanov and O. Shenderova, “Nanodiamond-based nanolubricants for motor oils,” Curr. Opin. Solid State Mater. Sci. 21, 17–24 (2017). https://doi.org/10.1016/j.cossms.2016.07.003

    Article  Google Scholar 

  15. J. Jira, B. Rezek, V. Kriha, A. Artemenko, I. Matolínová, V. Skakalova, P. Stenclova, and A. Kromka, “Inhibition of E. coli growth by nanodiamond and graphene oxide enhanced by Luria-Bertani medium,” Nanomaterials 8 (140), (2018). https://doi.org/10.3390/nano8030140

  16. J. Johnson, E. G. Pannatier, S. Carnicelli, G. Cecchini, N. Clarke, N. Cools, K. Hansen, H. Meesenburg, T. M. Nieminen, G. Pihl-Karlsson, H. Titeux, E. Vanguelova, A. Verstraeten, L. Vesterdal, P. Waldner, et al., “The response of soil solution chemistry in European forests to decreasing acid deposition,” Global Change Biol. 24, 3603–3619 (2018). https://doi.org/10.1111/gcb.14156

    Article  Google Scholar 

  17. S. Lee, K. Kim, H. K. Shon, S. D. Kim, and J. Cho, “Biotoxicity of nanoparticles: effect of natural organic matter,” J. Nanopart. Res. 13 (7), 3051–3061 (2011). https://doi.org/10.1007/s11051-010-0204-z

    Article  Google Scholar 

  18. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012). https://doi.org/10.1038/nnano.2011.209

    Article  Google Scholar 

  19. N. Nunn, M. D’Amora, N. Prabhakar, A. M. Panich, N. Froumin, M. D. Torelli, I. Vlasov, P. Reineck, B. Gibson, J. M. Rosenholm, S. Giordani, and O. Shenderova, “Fluorescent single-digit detonation nanodiamond for biomedical applications,” Methods Appl. Fluoresc. 6 (3), 035010 (2018). https://doi.org/10.1088/2050-6120/aac0c8

    Article  Google Scholar 

  20. N. Nunn, M. Torelli, G. McGuire, and O. Shenderova, “Nanodiamond: a high impact nanomaterial,” Curr. Opin. Solid State Mater. Sci. 21, 1–9 (2017). https://doi.org/10.1016/j.cossms.2016.06.008

    Article  Google Scholar 

  21. M. L. Pace, I. Reche, J. J. Cole, A. Fernandez-Barbero, I. P. Mazuecos, and Y. T. Prairie, “pH change induces shifts in the size and light absorption of dissolved organic matter,” Biogeochemistry 108, 109–118 (2012). https://doi.org/10.1007/s10533-011-9576-0

    Article  Google Scholar 

  22. N. Saleh, H.-J. Kim, T. Phenrat, K. Matyjaszewski, R. D. Tilton, and G. V. Lowry, “Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns,” Environ. Sci. Technol. 42 (9), 3349–3355 (2008). https://doi.org/10.1021/es071936b

    Article  Google Scholar 

  23. T. M. Sanderson, Ch. Barton, C. Cotton, and T. Karathanasis, “Long-term evaluation of acidic atmospheric deposition on soils and soil solution chemistry in the Daniel Boone National Forest, USA,” Water, Air Soil Pollut. 228, 403 (2017). https://doi.org/10.1007/s11270-017-3583-2

    Article  Google Scholar 

  24. G. E. Schaumann, A. Philippe, M. Bundschuh, G. Metreveli, S. Klitzke, D. Rakcheev, A. Grün, S. K. Kumahor, M. Kühn, T. Baumann, F. Lang, W. Manz, R. Schulz, and H.-J. Vogel, “Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts,” Sci. Total Environ. 535, 3–19 (2015). https://doi.org/10.1016/j.scitotenv.2014.10.035

    Article  Google Scholar 

  25. W. Schön, F. Mittermayr, A. Leis, I. Mischak, and M. Dietzel, “Temporal and spatial variability of chemical and isotopic composition of soil solutions from Cambisols—field study and experiments,” Sci. Total Environ. 572, 1066–1079 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.015

    Article  Google Scholar 

  26. B. J. R. Thio, D. Zhou, and A. A. Keller, “Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles,” J. Hazard. Mater. 189, 556–563 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.072

    Article  Google Scholar 

  27. H. Tinwala and S. Wairkar, “Production, surface modification and biomedical applications of nanodiamonds: a sparkling tool for theranostics,” Mater. Sci. Eng., C 97, 913–931 (2019). https://doi.org/10.1016/j.msec.2018.12.073

    Article  Google Scholar 

  28. F. Visconti, J. M. de Paz, and J. L. Rubio, “Principal component analysis of chemical properties of soil saturation extracts from an irrigated Mediterranean area: implications for calcite equilibrium in soil solutions,” Geoderma 151 (3–4), 407–416 (2009).

    Article  Google Scholar 

  29. F. Visconti, J. M. de Paz, and J. L. Rubio, “What information does the electrical conductivity of soil water extracts of 1 to 5 ratio (w/v) provide for soil salinity assessment of agricultural irrigated lands?” Geoderma 154, 387–397 (2010). https://doi.org/10.1016/j.geoderma.2009.11.012

    Article  Google Scholar 

  30. L. Zehlike, A. Peters, R. H. Ellerbrock, L. Degenkolb, and S. Klitzke, “Aggregation of TiO2 and Ag nanoparticles in soil solution—effects of primary nanoparticle size and dissolved organic matter characteristics,” Sci. Total Environ. 688, 288–298 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.020

    Article  Google Scholar 

  31. Y. X. Zhang, W. J. Zhang, Y. Fedutik, Z. W. Mao, and C. Y. Gao, “Nanodiamonds of different surface chemistry influence the toxicity and differentiation of rat bone mesenchymal stem cells in vitro,” J. Nanosci. Nanotechnol. 19 (9), 5426–5434 (2019). https://doi.org/10.1166/jnn.2019.16545

    Article  Google Scholar 

  32. Y. Zhu, Yu. Zhang, G. Shi, J. Yang, J. Zhang, W. Li, A. Li, R. Tai, H. Fang, Ch. Fan, and Q. Huang, “Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity,” Part. Fibre Toxicol. 12 (2), (2015). https://doi.org/10.1186/s12989-014-0075-z

Download references

ACKNOWLEDGMENTS

The author thanks M.G. Chernysheva for her assistance in measurements using Zetasizer Nano ZS and A.B. Volikov for assaying the contents of organic and inorganic carbon.

Funding

The work was funded by the state budget (Center of Information Technologies and Systems no. 116020110002-8). The soil sampling was performed by N.A. Safonova within the framework of project no. 16-14-00167 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kulikova.

Ethics declarations

The author states no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, N.A. The Effects of Water-Soluble Soil Components on the Size and Electrokinetic Potential of Nanodiamonds. Eurasian Soil Sc. 53, 882–891 (2020). https://doi.org/10.1134/S106422932007008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932007008X

Keywords:

Navigation