Skip to main content
Log in

Dependence of Soil Properties under Alpine Lichen Heath Community on the Soil Water Content and the Presence of Vaccinium vitis-idaea

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

An increasing participation of dwarf shrubs and shrubs in plant communities of alpine meadows and a tendency to a decrease in summer precipitation in mountain regions determine the relevance of assessing the role of ectomycorrhiza and ericoid mycorrhiza, as well as the soil moisture status, in nutrient availability for plants and microorganisms. The properties of a mountain-meadow soil (Umbric Leptosol), including labile forms of carbon, nitrogen, and phosphorus and the soil biological activity were studied under the alpine lichen heath in the Teberda Reserve at different soil water contents and in the presence or absence of Vaccinium vitis-idaea in the plant community. The soil under V. vitis-idaea was characterized by higher acidity, and the response of its properties to changes in the soil water content was less pronounced. In the absence of this dwarf shrub, soil properties pronouncedly differed in response to changes in the water content. Under herbaceous vegetation, the content of inorganic nitrogen, the activity of N-mineralization and nitrification, microbial biomass, and soil respiration decreased with a drop in soil moisture, whereas the concentration of labile organic carbon and nitrogen and the activity of exoenzymes increased. Such changes attest to a shift in the organic matter transformation from mineralization to depolymerization, which is more typical of ectomycorrhiza- and ericoid mycorrhiza-dominated ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. D. Ananyeva, E. A. Susyan, I. M. Ryzhova, E. O. Bocharnikova, and E. V. Stolnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast),” Eurasian Soil Sci. 42, 1029–1037 (2009).

    Article  Google Scholar 

  2. M. I. Makarov, “The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: a review,” Eurasian Soil Sci. 52, 193–205 (2019).

    Article  Google Scholar 

  3. M. I. Makarov, I. S. Buzin, A. V. Tiunov, T. I. Malysheva, M. S. Kadulin, and N. E. Koroleva, “Nitrogen isotopes in soils and plants of tundra ecosystems in the Khibiny Mountains,” Eurasian Soil Sci. 52, 1194–1206 (2019).

    Google Scholar 

  4. M. I. Makarov, M. S. Kadulin, S. R. Turchin, T. I. Malysheva, A. A. Aksenova, V. G. Onipchenko, and O. V. Menyailo, “The effect of Vaccinium vitis-idaea on properties of mountain-meadow soil under alpine lichen heath,” Russ. J. Ecol. 50, 337–342 (2019).

    Article  Google Scholar 

  5. M. I. Makarov, N. A. Leoshkina, A. A. Ermak, and T. I. Malysheva, “Seasonal dynamics of the mineral nitrogen forms in mountain-meadow alpine soils,” Eurasian Soil Sci. 43, 905–913 (2010).

    Article  Google Scholar 

  6. M. I. Makarov, T. I. Malysheva, M. S. Kadulin, N. V. Verkhovtseva, R. V. Sabirova, V. O. Lifanova, A. I. Zhuravleva, and M. M. Karpukhin, “The effect of ericoid mycorrhizal and ectomycorrhizal plants on soil properties of grass meadow in tundra of the Khibiny Mountains,” Eurasian Soil Sci. 53, 569–579 (2020).

    Article  Google Scholar 

  7. M. I. Makarov, T. I. Malysheva, O. S. Mulyukova, and O. V. Menyailo, Freeze–thaw effect on the processes of transformation of carbon and nitrogen compounds in alpine meadow soils, Russ. J. Ecol. 46, 317–324 (2015).

    Article  Google Scholar 

  8. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis (Academic, London, 2010; KMK, Moscow, 2012).

  9. I. T. M. Bödeker, K. E. Clemmensen, W. Boer, F. Martin, E. Olson, and B. D. Lindahl, “Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems,” New Phytol. 203, 245–256 (2014).

    Article  Google Scholar 

  10. P. C. Brooks, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform fumigation and release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen,” Soil Biol. Biochem. 17, 837–842 (1985).

    Article  Google Scholar 

  11. K. E. Clemmensen, R. D. Finlay, A. Dahlberg, J. Stenlid, D. A. Wardle, and B. D. Lindahl, “Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests,” New Phytol. 205, 1525–1536 (2015).

    Article  Google Scholar 

  12. F. A. Collier and M. I. Bidartondo, “Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands,” J. Ecol. 97, 950–963 (2009).

    Google Scholar 

  13. T. G. Elumeeva, A. A. Aksenova, V. G. Onipchenko, and M. J. A. Werger, “Effects of herbaceous plants functional groups on the dynamics and structure of an alpine lichen heath: the results of a removal experiment,” Plant Ecol. 219, 1435‒1447 (2018).

    Article  Google Scholar 

  14. E. Gebetsroither, J. Züger, and W. Loibl, “Drought in Alpine areas under changing climate conditions,” in Management Strategies to Adapt Alpine Space Forests to Climate Change Risks (InTech, London, 2013), pp. 165–189.

    Google Scholar 

  15. M. Hallinger, M. Manthey, and M. Wilmking, “Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia,” New Phytol. 186, 890–899 (2010).

    Article  Google Scholar 

  16. M. G. A. van der Heijden, F. M. Martin, M. A. Selosse, and I. R. Sanders, “Mycorrhizal ecology and evolution: the past, the present, and the future,” New Phytol. 205, 1406–1423 (2015).

    Article  Google Scholar 

  17. T. E. C. Kraus, R. A. Dahlgren, and R. J. Zasoski, “Tannins in nutrient dynamics of forest ecosystems—a review,” Plant Soil. 256, 41–66 (2003).

    Article  Google Scholar 

  18. G. Leitinger, R. Ruggenthaler, A. Hammerle, S. Lavorel, U. Schirpke, J.-C. Clement, P. Lamarque, N. Obojes, and U. Tappeiner, “Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps,” Ecohydrology 8, 1600–1613 (2015).

    Article  Google Scholar 

  19. R. Liese, T. Lübbe, N. W. Albers, and I. C. Meier, “The mycorrhizal type governs root exudation and N uptake of temperate tree species,” Tree Physiol. 38, 83–95 (2018).

    Article  Google Scholar 

  20. G. Lin, M. L. McCormack, C. Ma, and D. Guo, “Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests,” New Phytol. 213, 1440–1451 (2017).

    Article  Google Scholar 

  21. M.-C. Marx, M. Wood, and S. C. Jarvis, “A microplate fluorometric assay for the study of enzyme diversity in soils,” Soil Biol. Biochem. 33, 1633–1640 (2001).

    Article  Google Scholar 

  22. Molecular Mycorrhizal Symbiosis, Ed. by F. Martin (Wiley, Chichester, 2016).

    Google Scholar 

  23. E. E. Nuccio, A. Hodge, J. Pett-Ridge, D. J. Herman, P. K. Weber, and M. K. Firestone, “An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition,” Environ. Microbiol. 15, 1870–1881 (2013).

    Article  Google Scholar 

  24. V. G. Onipchenko, M. I. Makarov, and E. van der Maarel, “Influence of alpine plants on soil nutrient concentrations in a monoculture experiment,” Folia Geobot. 36, 225–241 (2001).

    Article  Google Scholar 

  25. K. H. Orwin, M. U. F. Kirschbaum, M. G. St John, and I. A. Dickie, “Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment,” Ecol. Lett. 14, 493–502 (2011).

    Article  Google Scholar 

  26. R. P. Phillips, E. Brzostek, and M. G. Midgley, “The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests,” New Phytol. 199, 41–51 (2013).

    Article  Google Scholar 

  27. L. A. Phillips, V. Ward, and M. D. Jones, “Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests,” ISME J. 8, 699–713 (2014).

    Article  Google Scholar 

  28. E. Post, M. C. Forchhammer, M. S. Bret-Harte, T. V. Callaghan, T. R. Christensen, B. Elberling, A. D. Fox, O. Gilg, D. S. Hik, T. T. Høye, R. A. Ims, E. Jeppesen, D. R. Klein, J. Madsen, A. D. McGuire, et al., “Ecological dynamics across the Arctic associated with recent climate change,” Science 325, 1355–1358 (2009).

    Article  Google Scholar 

  29. D. J. Read, J. R. Leake, and J. Perez-Moreno, “Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes,” Can. J. Bot. 82, 1243–1263 (2004).

    Article  Google Scholar 

  30. D. J. Read and J. Perez-Moreno, “Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance?” New Phytol. 157, 475–492 (2003).

    Article  Google Scholar 

  31. H. L. Reynolds, A. E. Hartley, K. M. Vogelsang, J. D. Bever, and P. A. Schultz, “Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture,” New Phytol. 167, 869–880 (2005).

    Article  Google Scholar 

  32. F. Rineau, D. Roth, F. Shah, M. Smits, T. Johansson, B. Canbäck, P. B. Olsen, P. Persson, M. N. Grell, E. Lindquist, I. V. Grigoriev, L. Lange, and A. Tunlid, “The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry,” Environ. Microbiol. 14, 1477–1487 (2012).

    Article  Google Scholar 

  33. B. N. Sulman, E. Shevliakova, E. R. Brzostek, S. N. Kivlin, S. Malyshev, D. N. L. Menge, and X. Zhang, “Diverse mycorrhizal associations enhance terrestrial C storage in a global model,” Global Biogeochem. Cycles 33, 501–523 (2019).

    Article  Google Scholar 

  34. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  35. R. Vargas, D. D. Baldocchi, J. I. Querejeta, P. S. Curtis, N. J. Hasselquist, I. A. Janssens, M. F. Allen, and L. Montagnani, “Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature,” New Phytologist. 185, 226–236 (2010).

    Article  Google Scholar 

  36. N. Wurzburger and R. L. Hendrick, “Rhododendron thickets alter N cycling and soil extracellular enzyme activities in southern Appalachian hardwood forests,” Pedobiologia 50, 563–576 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-14-10208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Makarov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, M.I., Sabirova, R.V., Kadulin, M.S. et al. Dependence of Soil Properties under Alpine Lichen Heath Community on the Soil Water Content and the Presence of Vaccinium vitis-idaea. Eurasian Soil Sc. 53, 941–949 (2020). https://doi.org/10.1134/S1064229320070091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320070091

Keywords:

Navigation